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Abstract

With the growth of large photometric surveys, accurately estimating photometric redshifts, preferably as

a probability density function (PDF), and fully understanding the implicit systematic uncertainties in this

process has become increasingly important. These surveys are expected to obtain images of billions of distinct

galaxies. As a result, storing and analyzing all of these photometric redshift PDFs will be non-trivial, and

this challenge becomes even more severe if a survey plans to compute and store multiple different PDFs. In

this thesis, we have developed an end-to-end framework that will compute accurate and robust photometric

redshift PDFs for massive data sets by using two new, state-of-the-art machine learning techniques that are

based on a random forest and a random atlas, respectively. By using data from several photometric surveys,

we demonstrate the applicability of these new techniques, and we demonstrate that our new approach is

among the best techniques currently available. We also show how different techniques can be combined

by using novel Bayesian techniques to improve the photometric redshift precision to unprecedented levels

while also presenting new approaches to better identify outliers. In addition, our framework provides

supplementary information regarding the data being analyzed, including unbiased estimates of the accuracy

of the technique without resorting to a validation data set, identification of poor photometric redshift areas

within the parameter space occupied by the spectroscopic training data, and a quantification of the relative

importance of the variables used during the estimation process. Furthermore, we present a new approach to

represent and store photometric redshift PDFs by using a sparse representation with outstanding compression

and reconstruction capabilities. We also demonstrate how this framework can also be directly incorporated

into cosmological analyses. The new techniques presented in this thesis are crucial to enable the development

of precision cosmology in the era of petascale astronomical surveys.
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Chapter 1

Introduction

1.1 The need of distances to galaxies in cosmology

Two of the most important research topics in all of the physical sciences are dark energy and dark matter.

Their complete picture remains one of the primary unsolved astrophysical problems (e.g., National Research

Council, SMD 2010 Science Plan). Unraveling these mysteries is complicated because we can’t observe dark

energy or dark matter directly, only their effect on visible sources, like galaxies or supernovae. On the one

hand, dark energy is responsible for the acceleration of the universe, with the first evidence observed from

the study of distances to type Ia Supernovae (Riess et al., 1998; Perlmutter et al., 1999). On the other hand,

dark matter provides the gravitational seed for the formation of astronomical objects like stars, galaxies and

clusters of galaxies with several evidence for its existence (Trimble, 1987). The current cosmological picture

is that these dark components dominate the formation and evolution of the large scale structures in the

Universe, and many of the important parameters that describe the cosmological model of our Universe are

well constrained by measurements of the temperature fluctuations in the Cosmic Microwave Background

(CMB; Planck Collaboration et al., 2013). However, it is undeniable that there remains a need for these

models to be constrained by the Universe at later times by studying how the mass and energy are distributed

today within large scale structures. As a result, one fundamental probe in Cosmology is to measure the

geometric and spatial three dimensional distribution of visible sources to infer the nature of these unseen

components. In order to make significant progress in this manner, several hundred million galaxies are

needed over a large area of the sky (Coil, 2013), therefore, galaxy surveys have become a major cosmological

tool.

A large number of techniques have recently been developed to constrain parameters of the standard

cosmological models by using observations from large photometric surveys, including primordial non-

Gaussianity (e.g., Cunha et al., 2010), the distribution of dark matter in clusters (e.g., Simet et al., 2012)

and its relationship to galaxies (e.g., Ross et al., 2010), and even constraining the neutrino mass (e.g., de

Putter et al., 2012). The basic analyses that underlie these works can also be used to constrain dark energy
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via weak lensing tomography (e.g., Bernstein & Jain, 2004), photometric baryon acoustic oscillations (e.g.,

Zhan & Knox, 2006; Reid et al., 2010), the galaxy angular power spectrum (e.g., Ho et al., 2012), and the

strong lensing of quasars (e.g., Coe & Moustakas, 2009).

All of these cosmological measurements are made by carefully measuring the spatial distribution of

galaxies. But these methods have in common one very important aspect, they require the distance to the

galaxies, which is a challenging task in astronomy. The distance between the galaxy and the observer is most

accurately made by using a spectroscopic redshift, which is computed from the difference in the wavelengths

of the emitted and detected light divided by the wavelength of the emitted light. Generally this is computed

for a particular emission or absortion line (or a set of lines) which is a measurement of the recessional

velocity of the galaxy due to the expansion of the Universe. Given a cosmological model, these redshifts can

be translated to a physical distance. Therefore, spectroscopic galaxy surveys have played an important role

in understanding the origin, composition, and evolution of our Universe. Surveys like the Sloan Digital Sky

Survey (SDSS; York et al. 2000), WiggleZ (Drinkwater et al., 2010), and BOSS (Dawson et al., 2013) have

imposed important constraints on the allowed parameter values of the standard cosmological model (e.g.,

Percival et al., 2010; Blake et al., 2011; Sánchez et al., 2013). However, spectroscopic measurements are

considerably more difficult to obtain, and are, therefore, more expensive than photometric measurements, as

they require long exposures in order to achieve sufficient signal-to-noise over a wide wavelength range. Also

spectroscopic analyses are often limited by sample size, survey complexity (i.e., masks), and survey depth

which has less effect on photometric ones.

As an example, while the Sloan Digital Sky Survey (SDSS; York et al. 2000) has taken millions of

spectroscopic redshifts of galaxies to high precision (Aihara et al., 2011), the same survey has obtained

detailed photometric measurements for a much larger sample of galaxies in considerably less time. This

dichotomy will only grow with ongoing and planned surveys that are dominated by photometric observations.

1.2 Photometric redshifts

As a result, considerable attention has been focused on the estimation of redshifts by applying statistical

techniques to the photometric observations of sources through different filters. These photometric redshift

(hereafter photo-z) estimation techniques have become crucial for modern, multi-band digital surveys; and

this need for fast and accurate photo-z estimation is becoming even more important for large photometric

surveys like the Dark Energy Survey (DES1) and the Large Synoptic Survey Telescope (LSST2), which are

1http://www.darkenergysurvey.org/
2http://www.lsst.org/lsst/
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probing galaxies that are often too faint to be spectroscopically observed. Adopting a photo-z approach

allows cosmological measurements on galaxy samples that are currently at least a hundred times larger

than comparable spectroscopic samples, that have relatively simple and uniform selection functions, and

that extend to fainter flux limits and larger angular scales and thus probe much larger cosmic volumes. In

summary, photo-z techniques provide a much higher number of galaxies with redshift estimates per unit

telescope time than spectroscopic surveys (Hildebrandt et al., 2010).

With the growth of these large photometric surveys, the estimation of galaxy redshifts by using multi band

photometry has grown significantly over the last two decades. The estimation of galaxy redshifts by using

multi band photometry was first performed by Baum (1962), while Koo (1985) and Loh & Spillar (1986)

were the first to compute galaxy redshifts by using digital photometric observations from charge coupled

devices. Presently, there are many different methods for computing photometric redshifts (see, e.g., Hogg

et al., 1998; Wang et al., 2008; Hildebrandt et al., 2010; Abdalla et al., 2011; Sánchez et al., 2014, for an

updated comparison of current photometric redshift methods and public codes). These techniques can be

broadly categorized as either template fitting algorithms or empirical training algorithms.

1.2.1 Template based techniques

The template fitting algorithms (e.g., Beńıtez, 2000; Bolzonella et al., 2000; Arnouts et al., 2002; Csabai

et al., 2003; Coe et al., 2006; Ilbert et al., 2006; Feldmann et al., 2006; Brammer et al., 2008; Wolf, 2009;

Assef et al., 2010; Sawicki, 2012) can either use empirical (e.g., Coleman et al., 1980; Kinney et al.,

1996; Mannucci et al., 2001; Assef et al., 2010) or synthetic spectral templates (e.g., Bruzual & Charlot,

2003). These techniques estimate a photometric redshift by finding the best match between the observed

magnitudes or colors and the synthetic magnitude or colors from the suite of templates that are sampled

across the expected redshift range of the photometric observations.

The template fitting methods, which leverage model galaxy spectral energy distributions (SED), have been

used extensively and are often preferred since once implemented they can be readily applied to new data by

simply adopting the appropriate photometric filter transmission functions. This method is often preferred over

empirical techniques as they can be applied without obtaining a high-quality spectroscopic training sample.

Given a representative sample of template galaxy spectra, most of these techniques can reliably predict a

photo-z, although the use of training data that includes known redshifts can improve these predictions (e.g.,

Beńıtez, 2000; Ilbert et al., 2006; Newman et al., 2013b). These techniques, however, are not exempt from

uncertainties due to measurement errors on the survey filter transmission curves, mismatches when fitting

the observed magnitudes or colors to template SEDs, and color-redshift degeneracies. Furthermore, template
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techniques generally become less reliable at high redshift where the uncertainties in galaxy SEDs increases,

since the templates are often calibrated by using low redshift galaxies.

1.2.2 Machine learning techniques

Empirical training methods use a spectroscopic training data set to calibrate an algorithm that can be quickly

applied to new photometric observations. Initially the training set was used to map a polynomial function

between the colors and the redshift (e.g., Connolly et al., 1995; Brunner et al., 1997). More recently,

this process has been extended to machine learning algorithms, including artificial neural networks (e.g.,

Collister & Lahav, 2004; Oyaizu et al., 2008b; Bonnett, 2013), boosted decision trees (e.g., Gerdes et al.,

2010), random forest (e.g., Carliles et al., 2010; Carrasco Kind & Brunner, 2013c), nearest neighbors (e.g.,

Ball et al., 2007, 2008; Lima et al., 2008), spectral connectivity analysis (e.g., Freeman et al., 2009),

Gaussian process (e.g., Way et al., 2009; Bonfield et al., 2010), support vector machines (e.g., Wadadekar,

2005), Quasi Newton Algorithm (e.g., Cavuoti et al., 2012; Brescia et al., 2014), and from analytical forms

suggested by computational algorithms (e.g., Schmidt & Lipson, 2009; Krone-Martins et al., 2014). While

only a few of these photo-z methods are publicly available, they all perform to a similar accuracy and provide

only a single redshift estimate rather than a full redshift probability density function for each galaxy.

All of the aforementioned techniques can be categorized as supervised learning algorithms, where the

input attributes (e.g., magnitudes or colors) are provided along with the desired outputs (e.g., redshift),

which are all employed during the learning process. In this sense, the redshift information from the training

set supervises the training phase. In Carrasco Kind & Brunner (2013a) we introduced a random forest

technique to compute photo-zs by using prediction trees. In this supervised machine learning technique, the

prediction trees use the values of the redshifts (from the spectroscopic sample) to determine the specific

point and input dimension, which is an exact numerical value, at which the data will be divided into two

branches. This process is repeated iteratively while building each tree in the forest.

On the other hand, an unsupervised machine learning photo-z technique does not use the desired outputs

(e.g., redshifts from the spectroscopic sample) during the training process; thus no decisions are made based

on this information. The only information used by the unsupervised algorithm are the input attributes

themselves. A Self Organized Map (SOM): (Kohonen, 1990, 2001) is an unsupervised, neural network

algorithm that is capable of projecting high-dimensional input data (e.g., the dimensions might represent

the magnitudes, colors or other attributes of a galaxy) onto a low-dimensional (usually two dimensions are

sufficient) map (Lawrence et al., 1999). Thus, a SOM corresponds to a nonlinear projection of the training

data that attempts to preserve the topology of the input attributes from the multidimensional space.
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Self organized maps have been utilized in several astronomical applications (e.g., Naim et al., 1997;

Brett et al., 2004; in der Au et al., 2012; Fustes et al., 2013). Recently, Geach (2012) and Way & Klose

(2012) have introduced the application of a SOM to compute a single photo-z estimator, providing strong

evidence that this technique has distinct advantages and can also be extended to compute a photo-z PDF. The

unsupervised nature of this approach provides a complementary tool to supervised algorithms, such as our

previously mentioned work, thereby opening the possibility to develop a meta-classifier that uses multiple,

complimentary approaches to improve the precision with which we can estimate photo-z PDFs. Another

important characteristic of a SOM when applied to photo-z estimation is the ability to produce a structured

ordering of the spectroscopic training data, since similar galaxies in the training sample are mapped to

neighboring neural nodes in the trained feature map. The application of this technique for the classification

of sources based on their location within the feature map, however, is still an underutilized tool.

When provided with a high quality spectroscopic training sample, empirical training techniques have

been shown to have similar or even better performance (Collister & Lahav, 2004; Carrasco Kind & Brunner,

2014c). In addition, empirical techniques are generally simpler to apply to different data sets and frequently

provide an improved quantification of any uncertainties, which can be encoded in a photo-z probability

density function (PDF). They also have the additional advantage that it is easier to include extra information,

such as galaxy profiles, concentration, angular sizes, or environmental properties, in addition to magnitudes

or colors. These methods, however, are primarily reliable only within the limits of the training data, and

sufficient caution must be exercised when extrapolating these algorithms beyond the limits of the training

data.

1.2.3 Photometric redshift systematics

As the demand for more accurate photo-z methods has grown, techniques have branched out into new areas

in order to improve the accuracy of photo-z estimation. While a complete understanding of the systematic

uncertainties is needed for a reliable and accurate machine learning photo-z algorithm (see, e.g., Oyaizu

et al., 2008a, for a discussion on photometric redshift errors), other issues have recently been recognized in

the effort to generate the most accurate photometric redshifts. For example, Cunha et al. (2012a,b) analyzed

the effect of systematics within the spectroscopic training data set that is used to estimate a galaxy photo-

z. Likewise, other functionality that a modern photo-z algorithm should provide include an identification

of outliers on the training set that lead to an incorrect estimation of a photo-z, an identification of the

features within the training data that most strongly affect a photo-z estimate, and an identification of areas of

parameter space (e.g., magnitudes, colors, and redshift ranges) that are under sampled by the training data.
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The last two features are important to the design of photometric surveys, as they provide useful information

to optimally and efficiently guide follow-up spectroscopy to generate the scientifically most useful training

data set for these algorithms.

Sometimes systematics in the computation of photo-z are very hard to address due to their unknown

nature, however we need to be able to identify those galaxies that might be contaminating our samples and

develop an approach to identify, remove and minimize these outliers. These data play an important role in

cosmological analyses as they can introduce biases in the model if they are not treated properly and a careful

study needs to be done in order to handle them, which represents a challenging task by itself.

1.2.4 Probability density functions

Given the growth of photometric-only surveys, cosmological measurements will require the use of reliable

photometric redshifts and a complete understanding of their uncertainties. As a result, photo-z methods will

be most effective going forward if they can not only robustly provide a reliable redshift estimation but also

a redshift probability density functions. Recently, particular attention has been focused on techniques that

compute a full photo-z PDF for each galaxy. This is because a photo-z PDF contains more information than a

single photo-z estimate, and the use of photo-z PDFs has been shown to improve the accuracy of cosmological

measurements (e.g., Mandelbaum et al., 2008; Myers et al., 2009; Sheldon et al., 2012; Carnero et al., 2012;

Jee et al., 2013) while not introducing any biases (e.g., Bordoloi et al., 2010; Abrahamse et al., 2011). For

example, Myers et al. (2009) have shown that by using the full redshift PDF within a two-point angular

quasar correlation function, as opposed to simply using a single redshift estimate, their measurement has

been improved by a factor of nearly four, which is equivalent to increasing the survey volume by a similar

factor. Likewise, Mandelbaum et al. (2008) discuss how the accuracy of photo-z and the inclusion of the

photo-z PDF affect the calibration for weak lensing studies. Other recent studies (see, e.g., Sheth, 2007;

van Breukelen & Clewley, 2009) have also demonstrated how a cosmological measurement can be improved

by using a photo-z PDF. However, given the lack of reliable photo-z PDF estimation techniques, this areas

remains relatively unexplored.

Given the importance of these photo-z PDFs, there is a present demand to compute them as efficiently and

accurately as possible. Additional requirements include the need to understand the impact of systematics from

the spectroscopic sample on the estimation of these PDFs (e.g., Oyaizu et al., 2008a; Cunha et al., 2012a,b),

and to maximally reduce the fraction of catastrophic outliers (e.g., Gorecki et al., 2014). Considerable

effort has, therefore, been put into both the development of different techniques and the exploration of new

approaches in order to maximize the efficacy of photo-z PDF estimation. Yet, the combination of multiple,
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independent photo-z PDF techniques has not been exhaustively explored (e.g., Carrasco Kind & Brunner,

2013b; Dahlen et al., 2013).

1.2.5 Big data problem

One fact that all photometric surveys have in common is the need to efficiently handle an overwhelming

quantity of imaging data. The reduction, analysis and storage of this data is a difficult problem; even with the

growth of computational resources, efficiently handling these data remains a pressing problem. In particular,

photo-z PDFs are currently computed on the summary catalogs that are produced by uniformly processing

imaging data. But storing photo-z PDFs for billions of sources is a challenge in itself, which is further

complicated if multiple, different photo-z techniques are desired or if different photo-z PDFs are generated

by using different galaxy templates. This is a problem both for those managing the data archives and for the

general community who desire to apply these photo-z PDF estimates to cosmological analyses. Thus the time

is ripe to address this issue.

1.3 Thesis outline

In this thesis we address several of the aforementioned issues by using data from several spectroscopic and

photometric surveys like SDSS, DEEP2, CFHTLens and DES that are introduced and detailed in Chapter 2.

In Chapter 3, we introduce TPZ (Trees for Photo-Z), a new, Python-based, machine learning, parallel code

for estimating photometric redshift PDFs by using prediction trees and random forest techniques (Breiman

et al., 1984; Breiman, 2001). Our approach is an ensemble learning method that generates several classifiers

and combines their results into a final output. Prediction trees partition the multi-dimensional space recur-

sively into smaller regions, which is terminated when a leaf only contains a few elements. Within these final

leaves, our algorithm can leverage a simple model for the actual prediction, by using, for example, the mean

value for a regression or the mode in a voting process as used in a classification scheme.

Likewise, the basic idea of a random forest method is to use bootstrap samples from the training data

to build a set of prediction trees. These trees are constructed by selecting the best split point from a

random subsample of the dimensions (e.g., magnitudes or colors) along which the data are subdivided. By

aggregating the predictions from this forest of trees, we produce a more accurate estimate.

Later in Chapter 4, we extend the previous work of Geach (2012) and Way & Klose (2012) to use self

organized maps to produce photo-z PDFs and to explore different configurations. This new work follows

a similar approach presented in Chapter 3. Herein, we present a new ensemble learning method that
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generates multiple, different SOMs, and subsequently combines their results into a final output that is a

probability distribution, which we call SOMz. In analogy to the random forest technique used by TPZ ,

we use bootstrap samples from the training data to build a set of unsupervised independent feature maps.

By aggregating the predictions from this atlas of random maps, we produce a more accurate and robust

final estimate.. Furthermore, we also explore the implementation of this algorithm by using three different

two-dimensional topologies: a rectangular grid, a hexagonal grid, and a spherical surface corresponding to

the 2D representation of the multidimensional training sample.

Given that the combination of multiple photo-z techniques is an underexplored area, we address this

by using a third, and more standard technique, that employs template fitting to produced photo-z PDFs

that is described in Chapter 5. In Chapter 6 we explicitly address this issue by presenting a novel Bayesian

framework to combine and fully exploit different photo-z PDF techniques. In particular, we show that the

combination of a standard template fitting technique with both a supervised and an unsupervised machine

learning method can improve the overall accuracy over any single individual method. Finally, we show that

this methodology can be easily extended to include additional, independent techniques and that we can

maximize the complex information contained within a photometric galaxy sample. We also demonstrate how

this combined approach can both reduce the number of outliers and improve the identification of catastrophic

outliers when compared to the individual techniques, which is presented in Chapter 7.

Given the importance of photo-z PDFs as we enter the era of precision cosmology and the volume of

data of current and future photometric surveys, we explore, in Chapter 8, different methods that allow

us to manipulate and use photo-z PDFs in a more efficient manner by representing them as compactly as

possible. We introduce the use of a sparse functional basis to represent a full photo-z PDF. This approach

minimizes the data required to represent the photo-z PDF, while maximizing the accuracy of the PDF. This

basis representation not only minimizes the storage requirements, but also allows us to manipulate PDFs

in a more computationally efficient manner, thereby increasing the computational efficiency of resulting

analyses. With this approach, each galaxy photo-z PDF is decomposed into an over determined basis system

by minimizing the number of basis functions retained. We analyze how this approach compares with other

representation techniques, in particular with a multi-Gaussian approach; and we demonstrate that, by using

our proposed functional form, the integration and manipulation of photo-z PDFs is both easier and faster

than when using either the original PDF or any other comparable technique.

We complete the thesis by showing applications that use photo-z PDFs and techniques described. First,

we show how to compute the galaxy distribution N(z), a very important measurement in cosmology, by using

stacked photo-z PDF and using our sparse representation framework. Next, we show a recent application
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of our techniques in a photo-z code comparison analysis by using early data from the Dark Energy Survey.

Finally we show a cosmological application on simulated data by computing the Angular Power Spectrum

of the matter density. In Chapter 10 we present our general conclusions of this thesis, along with future

research directions associated with this work.
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Chapter 2

Photometric and spectroscopic data

Outline
During this thesis we have used data coming from several photometric and spectroscopic surveys that vary

both in quantity and quality. In this chapter we briefly discuss these data sets and the specific data samples

from each that we used during the training and testing process. It is also specified in which chapters these

datasets are analyzed. The data sets used in this work, their abbreviations and chapters where is used are

summarized in Table 2.

Table 2.1: Summary of the data used in this thesis and the specific chapters where it is used.

Name of subsample Survey No. of galaxies Chapters where used
SL-1 SDSS 55,000 Chapter 3
SL-2 SDSS 1,147,397 Chapters 6, 7
PH-1 PHAT 1,984 Chapter 3
DP-1 DEEP2 20,227 Chapters 3, 4
DP-2 DEEP2 10,210 Chapters 6, 7
CF-1 CFHTLenS 49,868 Chapter 8
CF-2 CFHTLenS 1,000,000 Chapter 8
DS-1 DES 15,607 Chapter 9
DS-2 DES 25, 227, 559 Chapter 9

2.1 Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS; York et al., 2000) phases I, II and III conducted a photometric survey

in the optical bands u, g, r, i, z that covered almost 14,000 square degrees, or approximately mor than

one-fourth of the entire sky. The resultant photometric catalog contains photometry of over 108 galaxies,

making the SDSS one of the largest surveys ever completed. The SDSS also conducted a spectroscopic survey

of targets selected from the SDSS photometric catalog, obtaining spectra of about 106 low redshift galaxies.

In §3, we use a subset of the Main Galaxy Sample (MGS; Strauss et al., 2002) from the Data Release

7 catalog (Abazajian et al., 2009). Specifically, we selected 55,000 galaxies by using the online CasJobs
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website1. This spectroscopic data ranges from z ≈ 0.02 up to z ≈ 0.3 with a mean redshift of 0.1. From

this sample, which we call SL-1, we randomly selected 15,000 galaxies to train the TPZ implementation,

while holding the remaining 40,000 for testing. We note that this is a blind test, as the testing data are

not used in any way to train or calibrate the TPZ algorithm. Of all the measured attributes in the SDSS

photometric catalog, we have used only the four dimensions corresponding to the galaxy colors as derived by

the extinction corrected model magnitudes : u− g, g− r, r− i, and i− z. We use the SDSS colors as opposed

to the more commonly used magnitudes for this particular test to both demonstrate the flexibility of TPZ and

to generate scientifically more interesting ancillary information.

In §6, we use a subset of the spectroscopic data contained within the Data Release 10 catalog (Ahn et al.,

2013, SDSS-DR10), which includes over two million spectra of galaxies and quasars which include those

taken as apart as the Baryonic Oscillation Spectroscopic Survey (BOSS) program (Dawson et al., 2013).

Specifically, we selected galaxies by using the online CasJobs website2 and the following query from the

DR10 data base:

SELECT spec.specObjID,

gal.dered_u, gal.dered_g, gal.dered_r,

gal.dered_i, gal.dered_z,

gal.err_u, gal.err_g, gal.err_r,

gal.err_i, gal.err_z,

spec.z AS zs

INTO mydb.DR10_spec_clean_phot

FROM SpecObj AS spec

JOIN Galaxy AS gal

ON spec.specobjid = gal.specobjid,

PhotoObj AS phot

WHERE spec.class = ‘GALAXY’ -- Spectroscopic class

-- (GALAXY, QSO, or STAR)

AND gal.objId = phot.ObjID

AND phot.CLEAN=1 -- Clean photometry flag

-- (1=clean, 0=unclean)

AND spec.zWarning = 0 -- Bitmask of warning

-- vaules; 0 means all

1http://casjobs.sdss.org/CasJobs/
2http://skyserver.sdss3.org/CasJobs/
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-- is well

We also removed some additional bad photometric observations, such as the ones with larger photometric

errors, ensured the redshift values were positive, and compute colors for the final catalog, which contains

1,147,397 galaxies. The spectroscopic data range from z ≈ 0.02 up to z ≈ 0.8. These data are dominated by

the Main Galaxy Sample (MGS) at low redshifts, with mean redshift of z ∼ 0.1, and by luminous red galaxies

(LRG) at higher redshifts, with mean redshift of z ∼ 0.5.

From this sample, which we call SL-2, we randomly selected 50,000 galaxies for training and hold the

remaining 1,097,397 for testing. This training set corresponds to approximately 4.5% of the test set. We

note that this is a blind test, as the testing data are not used in any way to train or calibrate the algorithms.

Of all the measured attributes in the SDSS photometric catalog, we have only used the nine dimensions

corresponding to the five galaxy, extinction corrected, model magnitudes and the four colors derived from

these five magnitudes: u, g, r, i, z, u− g, g − r, r − i, and i− z.

2.2 PHoto-z Accuracy Testing Project

The PHoto-z Accuracy Testing (PHAT; Hildebrandt et al., 2010) project first compared the performance

and systematics of different photo-z codes on synthetic data (PHAT0) that was specifically created for a

contest, and also more recently used real data (PHAT1) in a similar manner; thereby providing a more

realistic comparison by using real measurements. The PHAT project3 provides filter responses for photo-z

estimation by SED-fitting methods and a training data set for photo-z estimation by empirical methods. The

true redshifts of the test data are not public, which provides a more reliable, blind comparison between

different approaches (see Hildebrandt et al., 2010, for more details about the contest). In §3, we use the

PHAT1 data, which consists of real observations selected from the Great Observatories Origins Deep Survey

Northern field (GOODS-N; Giavalisco et al., 2004).

These data include photometry from the original ACS four-band data: F435W(B), F606W(V+R), F775W(i’)

and F850LP(z’) that have been cross-matched with photometry from Capak et al. (2004), including U (from

KPNO), BJ , VJ , RC , IC , z
′

(from SUBARU), and HK
′

(from QUIRC). In addition, the photometry of PHAT1

also includes Deep J and H bands (from ULBCAM; Wang et al., 2006), KS (from WIRC; Bundy et al., 2005),

and four Spitzer IRAC bands: 3.6, 4.5, 5.8, and 8.0µ. This photometric catalog was cross-matched with all

available spectroscopic GOODS-N data (Cowie et al., 2004; Wirth et al., 2004; Treu et al., 2005; Reddy et al.,

2006), producing a final data set of eighteen band photometry and spectroscopy for 1,984 galaxies, we will

3www.astro.caltech.edu/twiki_phat/bin/view/Main/WebHome
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refer to this data set as PH-1.

For the contest, only 515 galaxy redshifts were published for use as training data; the remaining redshifts

were unpublished and used internally by the PHAT project to conduct a blind comparison test. Despite the

limited training data, multiple authors submitted the photo-z predictions and the results were published in

Hildebrandt et al. (2010). As the contest had already been completed when we started this work, we were

unable to participate. However, as discussed in chapter 3 we have tested TPZ on the PHAT1 training data in

an analogous manner as the contest and have submitted our results to the official PHAT wiki.

2.3 Deep Extragalactic Evolutionary Probe

The DEEP survey is a multi-phase, deep spectroscopic survey that was performed with the Keck telescope.

Phase I used the Low Resolution Imaging Spectrometer (LIRS) instrument (Oke et al., 1995), while phase

II used the DEep Imaging Multi-Object Spectrograph (DEIMOS) (Faber et al., 2003). The DEEP2 Galaxy

Redshift Survey is a magnitude limited spectroscopic survey of objects with RAB < 24.1 (Davis et al., 2003;

Newman et al., 2013a). The survey includes photometry in three bands from the Canada-France-Hawaii

Telescope (CFHT) 12K: B, R, and I and it has been recently extended by cross-matching the data to other

photometry databases. In this thesis, we use the Data Release 4 (Matthews et al., 2013), the latest DEEP2

release that includes secure and accurate spectroscopy for over 38,000 sources. The photometry for the

sources in this catalog was expanded by using two u, g, r, i, and z surveys: the Canada-France-Hawaii Legacy

Survey (CFHTLS; Gwyn, 2012), and the SDSS. For additional details about the photometric extension of the

DEEP2 catalog, see Matthews et al. (2013).

To use the DEEP2 data in Chapters 3 and 4, we have selected sources with secure redshifts (ZQUALITY≥ 3),

which were securely classified as galaxies, have no bad flags, and have full photometry. Even though the

filter responses are similar, the u, g, r, i, and z photometry come from two different surveys and are thus not

identical. We therefore treat those galaxies with SDSS photometry for fields 2, 3, and 4 of the DEEP2 target

areas independently from those for field 1 with CFHTLS photometry. In the end, this leaves us with a total of

20,227 galaxies with eight band photometry and redshifts, from this data, which we call DP-1, we randomly

select 10,000 for training and hold the rest for testing.

In chapter 6 we use a slight different data. Even though the filter responses are similar, the u, g, r, i, and

z photometry originates from two different surveys and are thus not identical. We therefore only present

in §6 the results from those galaxies that lie within field 1 that have CFHTLS photometry. Furthermore, we

have corrected these observed magnitudes by using the extinction maps from Schlegel et al. (1998). In the
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end, this leaves us with a total of 10,210 galaxies each with eight band photometry and redshifts. From this

data set, which we will refer as DP-2, we randomly select 5,000 galaxies for training and hold the remainder

out for testing. The computation of photo-z PDFs was completed by using the magnitudes in the bands B,

R, I, u, g, r, i, and z and their corresponding colors B −R, R− I, u− g, g − r, r − i, and i− z, providing a

total of fourteen dimensions.

2.4 Canada-France-Hawaii Telescope Lensing Survey

We use data from the Canada-France-Hawaii Telescope Lensing Survey (Heymans et al., 2012; Erben et al.,

2013), hereafter referred to as CFHTLenS4, with the photometry presented in Hildebrandt et al. (2012). This

galaxy survey includes more than twenty-five million objects observed in five photometric bands: u, g, r,

i, and z, covering 154 square degrees that includes all five years worth of data from the Wide, Deep and

Pre-survey components of the CFHT Legacy Survey (CFHTLS; Gwyn, 2012). To generate a spectroscopic

training sample, we have cross matched the galaxies from the CFHTLenS with spectroscopic surveys whose

sky coverage overlaps the four fields of the CFHTLenS survey.

In particular, we have selected high quality spectroscopic galaxies from the Deep Extragalactic Evolu-

tionary Probe Phase 2 (DEEP2; Davis et al., 2007; Newman et al., 2013a), the VIMOS (VIsible imaging

Multi-Object Spectrograph ) VLT (Very Large Telescope) Deep Survey (VVDS; Le Fèvre et al., 2005; Garilli

et al., 2008), the VIMOS Public Extragalactic Redshift Survey (VIPERS; Garilli et al., 2014), and the Sloan

Digital Sky Survey Data Release 10 (Ahn et al., 2013, SDSS-DR10), which includes over two million spectra

of galaxies and quasars taken as a part of the the Baryonic Oscillation Spectroscopic Survey (BOSS) program

(Dawson et al., 2013). In the end, we have 49,868 high quality spectroscopic galaxies with a mean redshift

of 0.6 to train our methods which we call CF-1. As the objective of chapter 8 is not to present photometric

redshift PDFs for all of the CFHTLenS galaxies, we have randomly selected a subsample of 106 galaxies with

no spectroscopic information from the survey that we use for the tests described in §8 which we call CF-2.

2.5 Dark Energy Survey

During the last part of this thesis we have also used data from the Science Verification (SV) period from the

Dark Energy Survey5 (DES; Flaugher, 2005) corresponding to observations carried out between late 2012

and early 2013 which provided science-quality images for almost 200 sq.deg at the nominal depth of the

4http://www.cfhtlens.org/
5http://www.darkenergysurvey.org/
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survey. This galaxy survey is planned to cover approximately 5000 sq. deg. from the southern hemisphere

to an unprecedented depth (iAB < 24) and will include more then 300 million galaxies up to z ∼ 1.5 in

5 photometric bands g, r, i, z and Y . The SV footprint was chosen to contain areas already covered by

several deep spectroscopic galaxy surveys, including VVDS (Deep and Wide) (Le Fèvre et al., 2005, 2013;

Garilli et al., 2008), ACES (Cooper et al., 2012), and zCOSMOS (Lilly et al., 2007, 2009) which together

provide a suitable calibration sample for the DES photometric redshifts. Each one of the four overlapping

fields (Sánchez et al., 2014) cover about the area of a single DES pointing, or about 3 sq. deg. The sample of

photometric galaxies with spectroscopic information correspond to 15607 galaxies which is then separated

in two for training and validations. We call this dataset DS-1. For a detailed description of this dataset as

well as the photometric properties and reduction process, exposures times, please refer to Sánchez et al.

(2014) where we not only describe the data in full detail but also performed a photometric redshift analysis

on this data and address the current performance on DES data using several photo-z algorithms. In Banerji

et al. (2014) we combine this data with infrared data from the ESO VISTA Hemisphere Survey survey (VHS;

McMahon et al., 2013) to increase, among other improvements, the number of detected galaxies. The

photometry of all objects observed during the SV period only are also used in this thesis and it correspond

to approximately 25 millions of sources which will refer as DS-2 sample. This sample has shown to be of

high quality as shown in Melchior et al. (2014) where this data is used to estimate the mass and the galaxy

distribution of four galaxy clusters using weak lensing analysis. Both of these datasets are used in §9.
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Chapter 3

Supervised machine learning for
photo-z: TPZ

Outline
In this chapter, we present a new, publicly available, parallel, machine learning algorithm that generates

photometric redshift PDFs by using prediction trees and random forest techniques, which we have named

TPZ (Carrasco Kind & Brunner, 2013a) (Trees for photo-z). This new algorithm incorporates measurement

errors into the calculation while also dealing efficiently with missing values in the data. In addition, our

implementation of this algorithm provides supplementary information regarding the data being analyzed,

including unbiased estimates of the accuracy of the technique without resorting to a validation data set,

identification of poor photometric redshift areas within the parameter space occupied by the spectroscopic

training data, a quantification of the relative importance of the variables used to construct the PDF, and a

robust identification of outliers.

3.1 Prediction trees

Among the different non-linear methods that are used to compute photometric redshifts, prediction trees

are one of the simplest yet most accurate techniques. Supervised learning methods using prediction trees,

either classification or regression, have been shown to be one of the most accurate algorithms for low as

well high multi-dimensional data (Caruana et al., 2008). They also are fast, can easily deal with missing

data, and have similarities with other non-parametric techniques. For example, prediction trees are similar

to k-nearest-neighbor (kNN) algorithms in that they both group data points with similar characteristics.

However, kNN use test data to identify similar points within the training set while keeping the parameter

k fixed, even though some points might have a very different number of similar neighbors. On the other

hand, prediction trees have terminal leaves that bound regions of the parameter space where the predictions

(i.e., redshifts) and their properties (e.g., magnitudes) are similar. As both the quantity and identify of test

data can vary between leaf (or terminal) nodes, prediction trees are known as adaptive nearest-neighbor

methods (Breiman et al., 1984).

Prediction trees are built by asking a sequence of questions that recursively split the data, frequently into

two branches, until a terminal leaf is created that meets a stopping criterion (e.g., a minimum leaf size). The

16



small region bounding the data in the terminal leaf node represents a specific subsample of the entire data

with similar properties. Within this leaf, a model is applied that provides a fairly comprehensible prediction,

especially in situations where many variables may exist that interact in a nonlinear manner as is often the

case with photo-z estimation. A visualization of an example tree generated by our technique is shown in

Figure 3.1.

There are two classes of prediction trees (Breiman et al., 1984): classification and regression, both of

which are implemented in TPZ .

(i) Classification Trees (also called Decision Trees): As the name suggests, this type of prediction tree is

designed to classify or predict a discrete category from the data. Each terminal leaf contains data that

belongs to one or more classes. The prediction can be either a point prediction based on the mode

of the classes inside that leaf or distributional by assigning probabilities for each category based on

their empirically estimated relative frequencies. For example, in our photo-z technique we use the

magnitudes or colors of galaxies to determine the probability that a galaxy lies either inside or outside

a specific redshift bin (a detailed explanation of the algorithm is presented in §3.3.1).

The tree is built by starting with a single node that encompasses the entire data, and recursively

splitting the data within a node into two or more branches along the dimension that provides the most

information about the desired classes. Formally this is done by choosing the attribute that maximizes

the Information Gain (IG), which is defined in terms of the impurity degree index Id:

IG(T,M) = Id(T )−
∑

mεvalues(M)

|Tm|
|T | Id(Tm) (3.1)

where T is the training data in a given node, M is one of the possible dimensions (e.g., magnitudes)

along which the node may be split, m are the possible values of a specific dimension M (in the case of

magnitudes m might represent 2 or more magnitude bins), |T | and |Tm| are respectively the size of the

total training data and the number of objects for a given subset m within the current node, and Id is

the function that represents the degree of impurity of the information.

There are three standard methods to compute the impurity index (Id). The first method is by using the

information entropy, which is defined in the expected manner (similar to Thermodynamics):

Id(T ) ≡ H(T ) = −
n∑
i=1

fi log2 fi (3.2)

where i is the class to be predicted (e.g., inside or outside a redshift bin) and the sum is over all n

17



possible classes (two in our example), and fi is the fraction of the training data belonging to class i.

The same definition applies for a subset of the data Tm.

The second option, is to measure the Gini impurity (G). In this case, a leaf is considered pure if all the

data contained within it have the same class. The Gini impurity can be computed inside each node:

Id(T ) ≡ G(T ) =

n∑
i=1

∑
j 6=i

fifj (3.3)

where fi and fj are the fractions of the training data of class i or j. The same equation applies for a

subset of T along one particular dimension M . Since fi are the fractions for all possible classes, we

have that the
∑
i fi = 1, and, therefore,

∑
j 6=i fj = 1− fi. As a result, the expression for Equation 3.3

can be simplified to

Id(T ) ≡ G(T ) = 1−
n∑
i=1

f2
i (3.4)

The third method is to simply measure the impurity degree by using the classification error (CE):

Id(T ) ≡ CE(T ) = 1−max {fi} (3.5)

where the maximum values are taken among the fractions fi within the data T that have class i.

During the tree construction, the data are scanned over each dimension to determine the split point

that maximizes the information gain as defined by Equation 3.1 and the attribute that maximizes this

impurity index overall is selected. For example, Figure 3.2 shows these three impurity indices, for a

node with data that are only categorized into two classes, as a function of the fraction of the data

having a specific class. If all of the data belong to a specific class, the impurity is zero. On the other

hand, if half of the data have one class and the remaining data all belong to the other class, the impurity

is at its maximum. Our implementation can calculate any of these three different impurity indices, and

any one of them can be selected for the construction of the prediction trees. Alternatively, the index

providing the highest information gain at a given node can be selected.

(ii) Regression Trees A second type of prediction tree is used when the data to be predicted is continuous;

since it does not use discrete classes, we instead fit a regression model to the data inside a leaf. The

construction of a regression tree follows the same structure as the classification tree, and once again

a node is generally divided into two branches (i.e., a binary tree). There are two primary differences,

however, between regression and decision trees. First, each leaf has training data with different redshift

values; the prediction value is based on a regression model covering these points. Usually, the mean of
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Figure 3.1: A simplified example of a binary prediction tree plotted radially. The initial node is close to the
center of the figure. The splitting process terminates when a stopping criterion is reached. Individual colors
represent the unique variable (e.g., fixed aperture g or r or magnitude colors) used for the splitting at each
node. Each leaf provides a specific prediction based on the information contained within that terminal node
(gray triangles in the figure). The subpanel corresponds to zoomed in region from the tree.
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Figure 3.2: Impurity index Id for a two-class example as a function of the probability of one of the classes
f1 using the information entropy(blue), Gini impurity (green) and classification error (red). In all cases, the
impurity is at its maximum when the fraction of data within a node with class 1 is 0.5, and zero when all
data are in the same category.

the training redshifts is returned, so each prediction is no longer a discrete classification, but is instead

an estimation of a continuous variable. Second, the procedure used to select the best dimension to split

for a regression tree is based on the minimization of the sum of the squared errors, which for a node T

is given by

S(T ) =
∑

mεvalues(M)

∑
i εm

(zi − ẑm)2 (3.6)

where m are the possible values (bins) of the dimension M , zi are the values of the target variable on

each branch/bin m, and ẑm is the specific prediction model used. In the case of the arithmetic mean,

we have that ẑm = 1
nm

∑
i εm zi, where nm are the members on branch m. This allows us to rewrite

Equation 3.6 as

S(T ) =
∑

mεvalues(M)

nmVm (3.7)

where Vm is the variance of the estimator ẑm.

At each node in our tree, we scan all dimensions to identify the split point that minimizes S(T ).

The splitting dimension that has the lowest value of S is selected as the splitting direction, and this

procedure is repeated until either some threshold in S is reached or any new nodes would contain less

than the predefined minimum leaf size.
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3.2 Random forest

Random forest is an ensemble learning algorithm that first generates many prediction trees and subsequently

combines their predictions together. It is one of the most accurate empirically trained learning techniques for

both low and high dimensional data (Caruana et al., 2008). The idea is simple, given a training sample T

containing N objects that have M attributes (e.g., survey magnitudes), create NT bootstrap samples of size

N (i.e., N randomly selected objects with replacement). From these samples, we create the corresponding

NT prediction trees without pruning them back.

If all the variables are examined when deciding the best point to split, the method is called bagging

(Breiman, 1996). An additional layer of randomness can be added to the bagging process by choosing the

best split point from among a random subsample of m∗ < M variables at each node, where m∗ is kept fixed

during the process. The value of m∗ is an adjustable parameter that is directly related to the strength of a tree

(a strong tree has a low error rate) and the correlation between any two trees (the more correlated the trees,

the higher the forest error rate). Increasing or reducing m∗ has the same effect on both features. Of course

we want to select the optimal value of m∗. A good starting point is to set m∗ '
√
M , although the accuracy

of the algorithm is, in the end, not very sensitive to this parameter for a large number of trees and relatively

small number of dimensions. After constructing all of the prediction trees, a final and robust prediction is

calculated by combining all NT estimates together.

Breiman (2001) first introduced this algorithm and showed that this technique performs very well when

compared to many other learning techniques. This technique is robust against overfitting (i.e., there is no

limit on the number of trees, NT , in the forest), it runs efficiently on large data sets, it can generate an

internal unbiased estimate of the error, and it can provide extra information about the relative importance of

the input variables and the internal structure of the training data.

3.2.1 Ancillary information

Given a training set T , this extra, ancillary information can be calculated prior to the computation of the

photo-z PDFs. As a result, we can use this a priori information to explore the efficacy of different parameter

combinations while also obtaining an estimate of the bias and variance of the photo-z prediction. This is

done by using out-of-bag (OOB) samples, which consist of a random sample of data that are left out of each

tree. In the process of growing a forest, NT trees are created using bootstrap samples of size N . In each of

these samples, about one-third of the data are not used when constructing a tree, and are instead used as a

test sample for the recently built tree. The test results created by using this OOB data are combined together
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to obtain estimators of the error, which, when built using a sufficiently large number of trees in the forest,

has been shown to be unbiased and as accurate as using a validation set of the same size as the training

set (Breiman, 1996). This removes, therefore, the need for a separate validation sample that can introduce a

bias into the final result. This method also has the advantage of using the full spectroscopic data to compute

PDFs.

The OOB data can also be used to estimate the relative importance of each attribute or dimension to

the photo-z calculation. This provides an elegant method to identify and remove attributes that do not

contribute significantly, thereby reducing the noise and dimensions of the problem. This also has the benefits

of increasing the performance of the implementation, improving our understanding of the complexity in

the interaction between different attributes, and improving the identification of new training data from, for

example, follow-up observations. This relative importance is estimated for each attribute by first quantifying

any variations in the prediction error when the OOB data are permuted only along the specific attribute,

leaving the others unchanged. This process is repeated across all trees, and the end result is the average in

the error increment when compared to the unperturbed variables for all the trees over the entire forest.

Another item we can construct is the proximity matrix, Prox(i, j), which is a symmetric, positive definite

matrix that gives the fraction of trees in the forest in which element i and j fall in the same terminal leaf.

This matrix is constructed tree-by-tree by running all the data, both the OOB and the data used for growing,

down each tree. When galaxy i and j are in the same leaf, their proximity is increased by one. At the end,

all the proximities are normalized by the total number of trees; therefore, similar galaxies will tend to have

higher proximities than dissimilar ones. This matrix can be computed for the training set, the test set, or

both together. Since this matrix quantifies the relative similarity between galaxies, it can be used to identify

outliers within a data set. For example, by computing the squared sum of all proximities for each galaxy, we

can algorithmically identify galaxies with few neighbors by selecting sources with the lowest value, which

can be flagged for further inspection.

To build or apply prediction trees, the data cannot have missing values for any of the attributes used to

construct the trees (e.g., the most important survey magnitudes). To include more data into the classification

process, we can use the proximity matrix to estimate any missing values or to replace highly uncertain values.

We do this in an iterative process, by performing the forest growing step of the algorithm and replacing

the missing attribute at each pass. We select the replacement value by computing the average parameter

value from the k nearest galaxies; we can also inversely weight these galaxies by their respective distance.

This process continues until we have obtained convergence or until a fixed number of iterations have been

performed.
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Figure 3.3: A simplified representation of TPZ , the details for each subprocess are described more fully
within the text. Note that each tree drawn in the figure represents a full random forest with NT bootstrap
samples for every one of the NR random perturbed samples. The big circles containing galaxies represent a
terminal leaf, which are directly used to make a prediction for each new galaxy.

By using the proximity matrix, OOB error estimates, and the relevant importance of different attributes,

we can also identify zones where the photo-z prediction is either poor or is loosely constrained by the

training data. In either case, this knowledge is of vital importance when deciding what galaxies to target

spectroscopically in order to optimally improve a training sample. One way this feature is implemented is by

using the two most important attributes to map the areas of parameter space by their prediction error. This

map can guide the identification of new data that increases the efficacy of the training sample by targeting

those galaxies that minimize the prediction error in under sampled areas, thereby more effectively utilizing

limited spectroscopic follow-up observations.
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3.3 Previous work

Two previous works have utilized prediction trees for photo-z calculations. Carliles et al. (2008, 2010)

predicted photometric redshifts and their errors by using a random forest built with the regression tree

package for R by using the mean value as their leaf model. They used a subset of the main galaxy sample

of the SDSS Data Release 6 (Adelman-McCarthy et al., 2008) catalog with colors as their attributes. They

demonstrated that random forest methods are well suited to the photo-z estimation problem as they obtained

comparable results to other machine learning methods, and they publicly released their R scripts. They did

not, however, take full advantage of the ancillary information provided by the random forest technique, nor

did they produce probability density functions.

Gerdes et al. (2010) have developed a new technique, called ArborZ, to compute photometric redshifts

using boosted decision trees (BDT). These classification trees are constructed in a similar manner to our

classification trees, as discussed in §3.1. In their approach, all data points start with equal weights, but after

each tree is built, higher weights are assigned to points that were previously misclassified. This process

iteratively combines weak classifiers into a single stronger one (Schapire et al., 1998); and, in the end, a

weighted vote across the classifiers produces the final prediction. In their approach, they divide the redshift

range into small bins and use an ensemble of BDTs to generate a probability distribution. A photometric

redshift is estimated by determining the mean value of this distribution. They tested this algorithm on SDSS

DR6 data as well as DES simulated data, finding similar performance to other empirical training methods,

such as the photo-z estimates provided by Oyaizu et al. (2008b) in the case of the SDSS data, and by

ANNz (Collister & Lahav, 2004) for the DES.

Our approach, detailed below, extends these previous results to create a new publicly available method

that uses random forests to compute PDFs by using classification and/or regression trees. Our approach

also uses extra information encoded within the measurement errors, generates extra, ancillary information

describing the spectroscopic training sample, and provides a better control of the uncertainties. We also,

therefore, are able to examine the importance of the attributes used to grow the trees, and identify areas in

the attribute space where the training data are dominated by shot noise statistics.

3.3.1 TPZ Algorithm

Our implementation of prediction trees with random forest for photometric redshift PDF prediction, TPZ , is

written in the Python1 programming language and uses MPI for parallel communication to run efficiently on

1http://www.python.org/
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distributed memory systems. As shown in Figure 3.3, our implementation is divided into three steps:

Data Pre-processing The first step prepares the data for the construction of the prediction trees. First,

we optionally perform a principal component analysis (PCA) of the data in order to reduce strong

correlations between attributes. This PCA transformation can reduce the dimensionality of the input

data prior to the training, which can be important for large data sets with many attributes. This step

also includes the replacement of missing values (explained later), which we do iteratively, finding that

between 5–10 iterations leads to a convergence on the missing values. We next generate NR training

samples by perturbing the measured values according to the error on each variable, which we assume

to be normally distributed. In this manner, we can incorporate the measurement error in the prediction

tree construction, we reduce the bias on proximity matrices, and we introduce randomness into the

construction of the trees in a controlled manner.

Random Forest Construction The second step is the actual construction of the random forest, where we

generate fully grown prediction trees. We construct NT trees by using bootstrapping with replacement

for each perturbed sample in the set of NR training samples we created in the first step generally the

same size of the original training set. This step can be done several times with a smaller number of

trees to both explore the parameter space and gain insight into the internal structure of the data prior

to building the final prediction trees. Finally, this step can also produce the ancillary information that

can characterize the performance of our code prior to estimating the final photo-z values.

Photo-z PDF Construction The final step uses the newly generated prediction trees to create individual

photo-z PDFs for each source in the application data set. This process involves running each source

down each tree, testing the source at each node until we arrive at a terminal leaf where we make a

prediction. At the end, we combine all of the forest predictions into a probability density function.

3.3.2 Implementation modes

TPZ can use either type of prediction tree that uses random forests: classification or regression; the actual

implementation details only differ after the first step.

Classification Mode: In this mode, the spectroscopic sample is divided into several redshift bins that either

have a fixed width (or, alternatively, resolution), which allows a variable number of galaxies within

each redshift bin, or have a fixed number of galaxies per redshift bin, which means our redshift bins

are of variable width. Within each bin, we create a forest of classification trees, as described above,

using the perturbed samples as well as the bootstrap samples. These trees classify an object as either
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lying inside or outside a bin. By using all of the training data within each bin, we both decrease the

overall performance of our implementation due to the larger data volume and also increase the chance

of catastrophic errors since most data will lie outside the bin of interest.

We address these issues by following a similar approach to that used by Gerdes et al. (2010). For each

bin, we identify all sources that lie inside the bin. This number of galaxies with class inside is nin. We

next select a factor fnout of the nin galaxies that have spectroscopic redshifts that lie outside the bin by

a factor of zout times the width δz of the bin. This means that galaxies with class outside fall zout × δz

from the boundaries of the bin. This allows a better distinction between the class inside and the class

outside as it would have if we include objects located very near to these boundaries. In the end, each

bin will have (1 + fnout)nin galaxies available for training the forest.

If the training set is limited, wider bins can be used in order to have a sufficient number of training

galaxies per bin. Furthermore, these bins can even be allowed to overlap by some value; this overlap

can be taken into account when building the photo-z PDFs by normalizing by the fraction of wider bins

that overlap with each other. After all of the forests are created for all of the bins, the test data are run

down each tree in each forest, which assigns either the class inside or outside to the test source. After

combining all of the assigned classes from the forest, we assign a probability for the source to belong to

that redshift bin, which is simply the number of times the source was assigned the inside class divided

by the total number of trees. By repeating this process for each bin and renormalizing the subsequent

result, we generate a photo-z PDF for the source.

Regression Mode: In this mode, we use all available training data to fully grow each tree. For each perturbed

sample, NT trees are created using the methodology explained in §3.1(ii). At the end, there is one

large random forest covering the entire spectroscopic range. The difference with the classification

mode is that, after the tree has been constructed by splitting the nodes according to Equation 3.7, each

terminal leaf only ends up with a few sources to make the prediction. In the simple case of obtaining

a single estimate, this leaf can be replaced by the mean or the median of the values inside it; more

generally, these values are kept for computing the PDF. To compute a photo-z, the test data are run

down each tree in the forest. Each tree returns the set of spectroscopic redshift measurements that,

after conversion to a given resolution, are converted into a PDF by normalizing to the total number of

objects returned. All trees have the same weight when constructing the PDF, as well as the values of

the terminal leaves identified in each tree. If a single value is desired, a mean value and its error can be

returned via the standard methods by aggregating all of the relevant values as returned by the different

trees.
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Figure 3.4: Photometric vs. spectroscopic redshift for all test SDSS MGS test galaxies using regression mode
(Left) and classification mode (Right).

The choice of either of these modes will depend on the characteristics of the data being analyzed. On

average, the regression mode runs faster than the classification mode for a specific accuracy, and is also better

suited for data that are not uniformly distributed. The classification mode, on the other hand, provides a

better characterization of the data as a function of redshift, since it creates its own random forest on each bin

unlike the regression mode where a forest is created using the full range in redshift. The classification mode

is also better suited for uniformly distributed data and can provide a reliable and robust prior probabilities

in a Bayesian framework when using wider redshift bins. When faced with a high quality and rich training

set, both modes will provide similar accuracies and error rates, but the regression mode, being faster, would

generally be preferred.

Figure 3.3 shows a simplified workflow of our TPZ implementation. Each tree in this figure represents

an entire forest, where the single tree results are averaged to get a final prediction. The classification

mode predicts a probability that a source lies within each bin, thereby building up a photo-z PDF, while the

regression mode keeps all sources found on a terminal leaf and combines their values to construct a photo-z

PDF at the desired resolution. For both modes, ancillary information can be provided, and both modes share

the same data pre-processing steps.

3.4 Application/Discussion

In this section, we apply the photo-z estimation technique presented in §3.3.1 to the SDSS main galaxy sample

(SL-1), the PHAT1 blind test sample (PH-1), and the DEEP2 sample (DP-1), which were all introduced in §2.
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Figure 3.5: A comparison of the bias (upper panel) and the scatter (lower panel) as a function of redshift for
the SDSS MGS data by using the regression mode (blue dots) and the classification mode (green squares).

Table 3.1: A comparison between the Regression Mode and the Classification mode for the SDSS MGS
galaxies with different confidence level restrictions.

Implementation < ∆z > [10−3] σ∆z[10−2] Fractiona

Reg All −0.08 2.25 100%
Class All 2.18 2.46 100%
Reg zConf > 0.6 −0.20 2.18 98.2%
Class zConf > 0.6 −2.15 2.34 94.2%
Reg zConf > 0.75 −0.33 1.97 91.0%
Class zConf > 0.75 −1.80 2.20 73.5%
Reg zConf > 0.9 −0.23 1.76 67.3%
Class zConf > 0.9 −0.92 1.82 34.7%

aFraction of galaxies remaining after a cut on zConf .

Since the point of this chapter is to introduce the TPZ algorithm and our associated implementation, we use

these three different data sets to highlight different features of the code. Thus we do not apply TPZ uniformly

to each data set, and the three subsections herein are necessarily different.

3.4.1 SDSS Main Galaxy Sample: SL-1

We first apply TPZ to the SDSS SL-1, described in §2.1 using both the regression and the classification

methods as explained in §3.3.2, and we present the results in Figure 3.4. The left and right panels compare

the estimated photometric redshifts to the spectroscopic redshifts for all 40,000 galaxies held out for testing

from the SL-1, for regression and classification modes, respectively. Both implementations show similar

performance in the central part of the redshift distribution; however, there are differences at both the
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low and high redshift regions of this sample. Figure 3.5 shows both the mean of the bias, defined as

∆z = zspec − zzphot, and its scatter for eight redshift bins. The regression mode performs slightly better at all

redshift bins, but especially on the first and last bin, where the classification mode shows systematic errors

in classification.

This error arises due to the lack of training data at those redshifts for the classification mode, where,

though we allow some overlap between bins, we keep the bin size constant, which can result in large

differences in the number of training objects per bin. This reduction is most pronounced in the lowest and

highest redshift bins, which results in a lower accuracy and a higher scatter. We also are affected at the low

redshift regime by the fact that a predicted redshift can not be negative, those introducing a positive skew to

the predicted redshift values for very low redshifts.

Since both implementation modes produce photo-z PDFs, we can compute confidence levels, zConf ,

around the mean (or mode) for each individual PDF. To simplify comparisons with past results, we define

zConf as the integrated probability between zphot±σTPZ(1+zphot). We select σTPZ = 0.03 as an approximation

to the intrinsic scatter of the algorithm when applied to the data, which can be computed by using the OOB

data. Of course we could define zConf in some other manner, but the results would be relatively unaffected.

Figure 3.6 presents four different PDFs taken from the SL-1, each with different confidence levels that are

shown as a bounded gray area under each PDF curve.

In this example, we measured zConf around the mean of each PDF and the actual spectroscopic redshifts

are shown as vertical dashed lines for reference. From this figure, we see that zConf provides a reasonable

summary of the concentration of the PDF, and can, therefore, be used to further restrict a photo-z sample by

selecting only those PDFs with a zConf value above some threshold. In general, as shown in this Figure, we

see that lower confidence values are strongly correlated with less accurate predictions. Nevertheless, it is still

possible to have a small fraction of galaxies with high zConf PDFs that are estimated at the wrong redshift.

We discuss the zConf parameter and its use in identifying a clean galaxy sample in further detail in §3.4.3.

In Table 3.1, we present the mean value of the different performance metrics described in the previous

paragraphs, as applied to the SDSS MGS, as well as the fraction of remain galaxies that remain in the sample

after a cut on zConf . As before, we see that, on average, the regression mode outperforms the classification

mode on this data set, although the difference is reduced when we apply a cut on the confidence level.

Interestingly, at more restrictive zConf cuts, the performance of both modes is similar; however, the number

of galaxies remaining in the regression mode sample is higher. Note that since these are averaged values

over the sample, any minor change implies a significant change on individual calculations.

As a result, we believe that making a cut on zConf results in a cleaner sample, as shown by the improved
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Figure 3.6: Four example PDFs produced by TPZ for the SDSS MGS selected with different values of zConf .
The higher the value of zConf , the more narrowly concentrated the PDF is about the mean. The verti-
cal dashed line corresponds to the spectroscopic value for the test galaxy and the gray area encloses the
confidence level.

performance metrics for either implementation mode. The difference in the fraction of galaxies that remain

in each sample indicates that, on average, PDFs generated by the classification implementation are broader

than PDFs generated by the regression implementation. This result is reasonable, as the classification mode

bins the redshift space and provides probabilities for all bins which can produce a more sparse distribution.

In the classification mode the probabilities are computed individually for each redshift bin, which could be

important and easily extended to build a prior distribution that can be used in a Bayesian method. Since the

regression mode was shown to be more accurate for the SDSS (see, e.g., Figure 3.4 and Table 3.1), we use

the mean of the PDF as calculated by the regression mode on the SDSS MGS data in the rest of this section,

unless otherwise indicated.

We can broadly compare our use of zConf to define clean galaxy samples to other published results; we

note that a direct, one-to-one, comparison is problematic due to the different training sets and attributes

used in computing photometric redshifts for the SDSS main galaxy sample. If we take a zConf >= 0.75,

we keep 91% of the data and compute the fraction of galaxies with |∆z| < zi, where zi = 0.001, 0.002 and

0.003 as 45.2%, 73.0% and 89.8%, respectively. These valued compare favorably to those from Laurino

et al. (2011) who, even though they used an extended catalog, compute these same values to be 43.4 %,

72.4% and 86.9%, with a mean bias of < ∆z >= 15× 10−3 and σ∆z = 1.52× 10−2 (these latter values can

be compared with our results shown in Table 3.1). Finally, we note that making a strict cut of ∆z > 0.006

identifies an outlier fraction of 1.54%, while other groups, using extended catalogs as well, have reported

30



0.03

0.02

0.01

0.00

0.01

0.02

0.03

<
∆
z
>

Photo-z estimate

OOB estimate

0.05 0.10 0.15 0.20 0.25
zphot

0.00

0.01

0.02

0.03

0.04

0.05
σ

∆
z

Photo-z estimate

OOB estimate

Figure 3.7: (Top) The averaged ∆z as a function of redshift for all test galaxies from the SDSS MGS (blue
circles) and from the OOB (Out-Of-Bag) data computed individually for each tree and subsequently averaged
over the forest (green squares). (Bottom) The standard deviation of ∆z as a function of redshift for the
test set (blue circles) and the OOB data (green squares). In this case the OOB data provide a unbiased,
upper-limit for these metrics.

values of 1.9% (Gerdes et al., 2010) and 2.6% (Oyaizu et al., 2008b).

Ancillary information

As detailed in §3.2.1, we can use the out-of-bag data to compute extra, ancillary information about the SL-1

dataset. For this purpose, we first select approximately one-third of the objects from each bootstrap sample.

Using these data, we compute an unbiased indicator of the bias (i.e., ∆z) and its standard deviation (i.e.,

σ∆z) for each tree. Finally, we average these metrics over all trees. In Figure 3.7, we present in the top panel

the mean bias as a function of redshift taken both from the test data (blue line) and from the OOB data used

during the training process (green line). The bottom panel in this figure presents the standard deviation for

each redshift bin. The RMS of these values provides an approximation to the intrinsic error and scatter of

the TPZ code, which can be used to compute confidence levels. From the OOB data, we compute the RMS of

the bias to be 0.0064, which can be compared to the value of 0.0017 obtained directly from TPZ for the SDSS

MGS test sample. Likewise, we can approximate the scatter; for the OOB data we have 0.0235, while for the

SDSS MGS test sample we have 0.0203. Thus, the OOB data provide upper limits for these metrics calculated

by using only the training sample.

This OOB technique is unique due to the fact that the OOB data were not used to train a particular tree,

yet the full data are used when building the forest by using the bootstrap samples. If we would have run all of
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the training data after the forest was constructed without using the OOB approach, we would have obtained

biased (although lower values) for these metrics. This approach would thus not provide a prior estimation

of the accuracy of TPZ . With the OOB data, we compute a priori these unbiased estimates exclusively from

the training set, without the need for a validation set, allowing us to take full advantage of all available

spectroscopic data.

The OOB data can also be used to compute the relative importance of each attribute, which can be done

by permuting each of the attributes in the non OOB data when training the tree. The result of this process

can be directly compared with the unperturbed case using the OOB data, as shown in Figure 3.8. In this

figure, the left panel shows the relative importance factor, which is computed by using the absolute value

of the OOB bias as a comparison metric, of the four colors used to build the regression trees for the MGS

sample. In this plot, a factor of one implies that the attribute acts as a random variable, since a perturbation

along that direction produces no changes. Any value greater than one produces a change in the bias, making

it larger and therefore less accurate.

From this figure, we see that the g − r color shows the largest relative importance factor, being close to

four, meaning that the absolute bias, on average, changes by this same factor when this color is randomly

perturbed. On the other hand, the i − z color is the least, on average, relevant attribute in this context,

with a relative importance factor less than 1.5. Due to the limited number of attributes in this test, however,

removing this last color actually produces slightly worse results. In the general case when more attributes

are present, removing less important variables will improve the results. While this result might seem counter-

intuitive, it results naturally from the random nature of the tree construction. Since only m attributes (e.g.,

three) are randomly selected to decide the split dimension, an attribute with overall low importance can be

occasionally selected to split a node. By omitting attributes with lower importance, we force the trees to be

built from attributes with greater information content, thereby improving the accuracy of the prediction.

Another interesting point is that the relative importance for both of the mentioned colors remain con-

sistent, independent of redshift, while the other two colors show variation (i.e., u − g and r − i exchange

importance ratings more than once), although they are overall consistent with each other. This behavior is

mainly due to important spectral features, such as the 4000 Å break, passing between different filters, which

TPZ identifies algorithmically, as important indicators of a galaxy’s redshift. We see this result from another

perspective in the central panel of Figure 3.8, which presents the RMS of the relative importance, sorted by

their rank, for the four colors computed by using the absolute bias (blue line) and the variance (red line).

Both metrics rank the attributes in the same order and either can be used to compute their importance to

the data set. Perturbing the attributes produces a stronger effect on the absolute bias than on the scatter,
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Figure 3.8: (Left): The attribute importance factor IA as a function of redshift for the four attributes (SDSS
colors) used in this analysis for the bias only. This factor quantifies how much the metrics decrease as we
permute the attributes one at a time. (Right): RMS of the relative importance factor as a function of the
attributes computed by using the bias (blue) and the scatter( red). (Right): A heat map constructed by using
the two most important attributes, which indicates areas of parameter space where the photo-z prediction
is poor. The higher the value (i.e., bluer) in a region, the more training data are needed to increase the
accuracy of photo-z estimation within that region. These zones might also contain outliers or galaxies with
bad photometry.

mainly because when perturbing one dimension, we lose information and thereby increase the likelihood

that a galaxy will end up in a random branch of the tree, especially for an important attribute. This would

likely lead to a misclassification, which directly affects the mean absolute bias.

Relative Importance

The importance rank can also be used to better understand the training data, to check whether it is possible

to reduce the dimensionality of the problem, and to identify areas of the mapped parameter space where

new training data can be most effectively incorporated. This latter point can be accomplished by identifying

the leaf nodes, and the galaxies contained therein, for each tree and computing their accuracy on predicting

for the OOB data along with their proximity matrices. By averaging over these results for all trees, we obtain

the desired result.

For example, by using the two most important attributes previously identified for the SDSS MGS (g − r,

and u− g), we present a heat map in Figure 3.9 that encodes the binned performance of these two attributes,

where higher values indicate lower predictive success in that bin. In this plot, we see there are a few bins

where performance is markedly lower (blue and light blue squares), and several areas that are lower than

average (the yellow bins). On the other hand, there are two areas where the predictive power is quite high

(deep orange-red), which are likely the result of the known color bi-modality of SDSS galaxies (Strateva
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et al., 2001) where early-type galaxies lie in the upper right part of this plot and late-type galaxies lie in

the bottom left part of this plot. The areas in this heat map where the predictive performance is low can be

caused by either a lack of training data, by galaxies with color degeneracies, or by galaxies with higher than

normal magnitude errors. As a result, these areas can be prioritized for follow-up observations to improve

the performance of the photo-z estimation.

Identifying new training data

Previously, we had stated that the relative importance of the different attributes, graphically shown in the

heat map in Figure 3.9, could be used to optimally identify new training data. We test this assumption by first

randomly selecting 1,000 galaxies as our training set, in order to simulate a poor training set, so that we can

quantify the effects of both randomly adding new data and selectively adding new data by using the relative

importance. We perform this test by first adding 1,000 new galaxies and second by adding 2,000 galaxies and

computing the mean normalized bias, defined as ∆z′ = (zspec− zphot)/(1 + zspec), and its standard deviation

as we change the size of the training set by using the four color attributes from the SDSS MGS and and a

forest with 100 prediction trees.

We summarize these test results in Table 3.2. As shown in the table, selecting galaxies from those zones

with lower accuracy as indicated by the heat map produces more accurate predictions than adding galaxies

randomly. In fact, even adding 1,000 galaxies by using the heat map produces a slightly better performance

than adding 2,000 galaxies randomly. These results indicate that it is more important to selectively add

galaxies to areas where the prediction is poor than to simply increase the size of the training set.

We continue this process, by continually adding either 1,000 or 2,000 new galaxies to the training set.

As the bottom panel of Figure 3.11 for the SDSS MGS demonstrates, after about 5,000 galaxies (or at half

the size of our full training set), the performance metric shows little variation, which is also reflected in

the last row of Table 3.2 where the metrics for the 15,000 galaxy training set are presented for comparison.

This test demonstrates how current and future photometric surveys can optimally construct training sets by

either selectively using existing observations, or by obtaining new spectroscopic observations to improve the

photo-z estimation.

Error distribution

After applying TPZ to the SDSS MGS, we can estimate photo-z errors directly from the estimated PDF by

computing either the mean, the mode, or some other statistic from this distribution. As a demonstration,

we calculate the error σ68 as the region of the photo-z PDF centered on the mean that contains 68% of the
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Table 3.2: A comparison of the performance of TPZ for the SDSS MGS when extra data are added to the
training set either randomly or by selectively using ancillary information.

Number of training galaxies < ∆z′ > σ∆z′

1,000 -0.0043 0.042
1,000 + 1,000 from random -0.0037 0.038
1,000 + 1,000 from map -0.0033 0.032
1,000 + 2,000 from random -0.0034 0.036
1,000 + 2,000 from map -0.0022 0.025
15,000 -0.0018 0.021
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Figure 3.10: The photometric standardized error, (zphot− zspec)/σ68, for the MGS galaxies (black dots) using
the mean of each individual PDF and the best fit Gaussian with µ = 0.112 and σ = 0.949 (solid green curve).

cumulative probability. We next calculate the distribution of these standard errors by computing (zphot −

zspec)/σ68 for each PDF, which is shown as the black points in Figure 3.10. For unbiased standard error

estimates, this distribution should be normally distributed with zero mean and unit variance. When we fit

our measured points, we obtain a Gaussian with mean equal to 0.112 and a width of 0.949, which is shown

by the solid green curve.

This simple error estimate is quite close to the unbiased expectation, which is as we would expect for any

reliable technique. The fit is not a perfect Gaussian due to a slightly extended tail on the left hand side of

the distribution. We interpret this as a manifestation of the very narrow PDFs we have obtained and that the

SDSS MGS is concentrated at lower redshifts where most photo-z techniques suffer from a small tendency to

over-predict the photometric redshifts, as shown in the left panel of Figure 3.4.
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Size of forest

When we construct a forest for prediction, one parameter that must be specified is the number of trees

that should be constructed. This is important as the more trees in the forest, the higher the computational

demands, which slows the training process and construction of photo-z PDFs. Thus, we test the performance

of TPZ for the SDSS MGS by varying the number of trees built for our forest for a fixed-size training sample.

As before, we compute the mean of the absolute bias and its standard deviation, and present how these

quantities vary as the number of trees in our forest changes for a fixed training size of 10,000 galaxies.

These results are presented in the top panel of Figure 3.11, which shows that our algorithm does become

more accurate as the number of trees increases. However, after around 100 trees, the predictive power of the

forest shows little variation, indicating that this is a reasonable number of trees for this prediction process.

Breiman (2001) demonstrated that, as the number of trees in a random forest increases, any margin function

will converge to a limit value. Thus, as expected, we see our generalized error value converging. As a result,

this implies that our technique does not over-fit the data as more trees are added in comparison to other

machine learning methods.

Training size

Once we know the optimal number of trees that must be built for our forest, we next need to know the

optimal size of our training set. By using 100 trees (as determined in the previous section), we vary the size

of our training set and present the results in the bottom panel of Figure 3.11. As shown in this figure, the

accuracy of TPZ for predicting photo-z does not change significantly after using around 70% of the galaxies.

This is an interesting result, that our approach quantifies in an elegant manner, but which will obviously vary

between different data sets. Fundamentally, as the training set increases in size, the prediction accuracy also

increases until most of the multi-dimensional parameter space has been sampled and little extra information

is added by new training galaxies.

Of course in this test we have not used the relative importance of our parameter attributes, as shown,

for example, in the central panel of Figure 3.8. By manually selecting additional data, we should be able

to reduce the values of these metrics significantly, which is discussed in the next section. But even in our

current approach, we expect that some of our test data are not well represented in our training set, which will

limit the accuracy of this approach. We see this as an opportunity, however, as we can compute a cross-data

proximity matrix by using the trained forest to identify galaxies within the test data that are isolated with

few neighbors in the parameter space. Once identified, these galaxies could be treated individually by using,

for example, other photo-z estimation techniques (see, e.g., Carrasco Kind & Brunner (2014a)).
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Figure 3.11: The absolute mean normalized bias defined as |∆z′| = |(zspec−zphot)|/(1+zspec), and its scatter
as a function of the number of trees in the forest, keeping the training set fixed (top). The same two values
as a function of the size of the training set keeping the number of trees fixed at 100 for galaxies in the SL-1
(bottom).

3.4.2 PHAT1 blind test: PH-1

We also tested TPZ on the PHAT1 dataset PH-1, described in §2.2, which is a blind contest where the test

spectroscopic redshifts are unknown to the competitors. Therefore, this provides a reliable method to

compare the performance of different photo-z techniques. In this contest, only a limited quantity of training

data are provided; we have approximately 500 galaxies to train our algorithm for the approximately 1,500

galaxies that form the validation sample. These data also have a sparse redshift distribution, extending from

z ≈ 0 to z ∼ 6. Despite these limitations, we applied TPZ to this training data, submitted our results to

the contest, and obtained the resulting performance metrics from the PHAT leader (H. Hildebrandt, private

communication). We present our specific results in Table 3.3, which can be compared directly with the results

shown in Table 5 of the PHAT paper (Hildebrandt et al., 2010).

We computed validation results for four different photometric samples: by using all eighteen photometric

bands, by omitting the Spitzer photometry and using only fourteen photometric bands, and by creating

magnitude limited (R < 24) for each of these two galaxy samples. For these validation runs, we use the

regression mode to create a forest of 150 trees with m∗ = 4 (as described in §3.2). In all runs, we made no

cuts on the zConf parameter so that we could more directly compare our results to the other competitors. In

the end, the TPZ results are among the most accurate photo-z predictions, especially when compared to other

empirical training codes. Interestingly enough, TPZ even outperforms some template photo-z techniques,
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Table 3.3: The TPZ results for the PHAT1 catalogue both with and without the IRAC bands, and for all galaxies
and for a magnitude-limited sample with R < 24. Note that these are the same statistics presented in Table 5
of Hildebrandt et al. (2010) for other photo-z estimation techniques.

Run biasa scatterb outlier ratec

18-band −0.002 0.055 14.1 %
14-band −0.007 0.055 12.6 %
18-band R < 24 −0.004 0.055 11.1 %
14-band R < 24 −0.009 0.054 9.6 %

abias is defined as: ∆z′ =
zspec−zphot

1+zspec
bRMS of the bias ∆z′
cOutliers are defined as objects with |∆z′| > 0.15.

which are supposedly better suited for this particular challenge due to the dearth of training data and large

redshift range covered by the validation sample. These results show that even in less than ideal conditions,

TPZ provides a robust estimation of photometric redshifts. Note that due to the lack of training data and the

extended redshift distribution of the validation sample, we did not generate ancillary information for the

data by using the OOB approach.

3.4.3 DEEP2: DP-1

We have also tested TPZ by using the DEEP2 redshift survey data, which extends to much higher redshifts than

the SL-1. As described in §2.3, we treat the galaxies with CFHTLS photometry independently from those with

SDSS photometry, but in the end we merge the photo-z results. We follow a similar analysis to what we used

with the SL-1, and after we compute the photo-z PDFs, we select only those galaxies with zConf > 0.7, which

includes about 81% of the galaxies. We have that the average bias, using ∆z′ = (zspec − zphot)/(1 + zspec), is

-0.007 with σ∆z′ = 0.059 and a outlier rate, defined as |∆z′| > 0.15 = 2.9%. We know of no previous photo-z

analyses of these data (described in §2.3) with which to compare these results. The results are presented

in Figure 3.12, which compares the photo-z computed by using the mean of each individual PDF with the

spectroscopic redshift for the 7,856 galaxies. In this figure, we also compute the median, shown by the black

dots, and the tenth and ninetieth percentiles, shown by the black error bars, within spectroscopic bins of

width ∆z = 0.1.

As this figure demonstrates, we see consistent results across all redshifts, and both the isodensity contours

and the errors bars indicate that there are few outliers or catastrophic photo-z. However, at both ends of the

distribution, we see several bins that show that the photo-z results are less accurate and are systematically

higher for the first two bins and systematically lower for the last two bins. This effect is often seen with

empirical techniques, as the spectroscopic training samples are often less complete at these redshifts, see, e.g.,
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Figure 3.12: The TPZ photo-z with zConf > 0.7 versus the spectroscopic redshifts for 7,856 galaxies selected
from the DEEP2 redshift survey. The black dots are the median values of zphot and the errors bars correspond
to the tenth and ninetieth percentiles within a given spectroscopic bin of width ∆z = 0.1.

the redshift distribution in Figure 9.1. Another effect causing this skewness is that estimated photometric

redshifts can not be negative, thus our probability distribution can not be symmetrical at the low redshift

end. Another possible explanation for the low redshift systematic is the effect of galaxy inclination and the

induced extinction on photo-z prediction as shown recently by Yip et al. (2011).

Likewise, the systematic underestimation at higher redshifts is likely affected by the fact that many of

these galaxies are near the limit of the photometry and thus have higher than average magnitude errors. In

combination with the lower density of training data, this will reduce the efficacy of our photo-z technique. To

understand this effect, recall that our trees are built from objects whose photometry is sampled by assuming

a normal distribution defined by the magnitude and magnitude error from the bootstrap samples. As the

magnitude error increases, the range of possible values to sample increases, thereby producing a sparser

sampling for this galaxy within our forest. Since there are few galaxies with redshifts above 1.3 in the training

data, the branches on the forest for high-z galaxies are mainly dominated by training galaxies with redshifts

closer to 1. As we build the PDF for the high-z galaxies, the PDFs will be positive skewed, and thus the mean

value of each PDF will tend to be at lower redshift values.

We demonstrate this skewness in Figure 3.13, which shows the average skewness of the photo-z PDFs

and the one-sigma error as a function of the spectroscopic redshift. These two quantities are computed as
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Figure 3.13: The skewness of the photo-z PDF as a function of spectroscopic redshift. The solid black line is
the mean of the skewness and the pink shaded region corresponds to the one-σ interval. Positive skewness
indicate a PDF skewed to lower redshifts.

the third standardized moment:

Sk =

∫ (
z − z̄
σz

)3

p(z)dz (3.8)

with,

z̄ =

∫
zp(z)dz and, σz =

∫
(z− z̄)2p(z)dz (3.9)

where the integrals are computed over the redshift domain, and p(z) is the photo-z PDF. We can see that

for redshifts up to 1.1 the average skewness is very close to zero, showing a small trend to negative values,

which will, on average, produce lower values for the mean photo-z. At higher redshifts, however, there is

a clear increase in the average skewness, which will tend to produce lower values for the mean of the PDF.

It is important to note that even though these PDFs may be (slightly) skewed, they still predict sufficient

probability near the true redshift, information that is overlooked by other methods that use one point

predictions. On the other hand, a catastrophic photo-z would have a symmetric PDF centered near the wrong

redshift, which is not what we observe here.

Relative Importance

By using OOB data, we have computed the metrics from the training data that we compare in Table 3.4

to the metrics we obtained from the test data after the photo-z distributions were computed. The first

two rows of this table show the complete results for all attributes for the DP-1 galaxies. From this we see

41



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
redshift

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8
A

tt
ri

b
u
te

 i
m

p
o
rt

a
n
ce

 I
A

r
R
i
B
RG

r R i z g I u B RG
Attribute

1.0

1.2

1.4

1.6

1.8

2.0

2.2

A
tt

ri
b
u
te

 i
m

p
o
rt

a
n
ce

 I
A

|∆z|
σ∆z

Figure 3.14: (Left): The variable importance factor, IA, as a function of redshift for the three most and the
two least important attributes (i.e., DEEP2 magnitudes) using the bias to quantify this importance. This index
specifies how important an attribute is to the calculation of a metric when we permute the attributes one at a
time. (Right): The RMS of the attribute importance factor as a function of the attributes computed by using
the bias (blue) and its scatter (red). Both of these metrics capture the same relative attribute importance.

that there is strong agreement between the OOB and test data results for both the bias and the variance.

We also computed the relative importance for the eight photometric bands and the RG attribute, which is

the estimated R-band radius of an object in 0.207” pixels (i.e., the sigma of the Gaussian fit to the light

distribution).

In the left panel of Figure 3.14, we present the attribute importance factor as a function of redshift for

the three most and the two least important attributes. From this figure, we see that the R band and the r

band are the most important attributes for making a photo-z prediction, similar to the g − r color for the

SDSS MGS. This demonstrates that by a pure statistical analysis, in the optical regime, the R band is the most

effective attribute. These attributes show a peak in their importance between redshifts of 0.3 to 0.5. We

interpret this increase to the presence of the 4000Åbreak being located at these redshifts within these filters.

Likewise, the next two most important attributes are the i band and the z band, which are likely important

for the same reason, albeit over a slightly higher redshift range.

On the other hand, the least two important attributes are the B band and the RG attribute. As shown

in this figure, the RG attribute does not contribute to the photo-z prediction, instead acting like a random

variable and thus is likely introducing extra noise into the calculation. We also see no clear evidence that the

effect of this attribute changes with redshift. At low redshifts, this attribute could be affected by inclination

angle or spectral type, while at higher redshifts, galaxies tend to be fainter and thus have smaller angular

sizes. Presumably, these cumulative effects combine to erase any important information this attribute might

provide to the photo-z calculation.
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Table 3.4: A comparison in the accuracy of photo-z predication by using different attribute combinations
from the DEEP2 data for all test galaxies. The first row are the metrics for TPZ using only OOB data, which
are comparable to the values obtained from the full test data, shown in the second row. The remaining rows
provide these metrics for training data that have had the indicated number of attributes removed from the
calculation.

Attribute Selection < |∆z′| > σ∆z

All attributes (OOB metrics) 0.052 0.053
All attributes 0.047 0.049
Remove 2 least important 0.044 0.046
Remove 2 most important 0.061 0.068
Remove 4 least important 0.044 0.048
Remove 4 most important 0.070 0.084

In the right panel of Figure 3.14, we present the mean relative importance for each attribute computed

from the changes in the mean (blue circles) and the scatter (red squares) when this attributed is permuted,

similar to the central panel of Figure 3.8. Once again, both metrics agree with the importance ranking. In

order to characterize the attributes and their computed ranking of importance, we have made the following

tests. First, we removed the two least important attributes, after which we remove the two most important

attributes, reincorporating the previously removed attributes. We repeat this process, but now we remove

alternately the four least and most important attributes. In each case, we test whether TPZ is able to correctly

recognize the attribute importances. These results are summarized in Table 3.4, where we use the absolute

mean value of ∆z′ and its dispersion.

As is not surprising, we see that removing the two least important attributes does, in effect, improve

the precision of TPZ while also making the code run faster since we have fewer dimensions to check when

splitting nodes within the tree, less data to keep in memory when building the tree thus improving cache

access, and random realizations from the input parameters will be faster since there are fewer dimensions

to sample. Yet, removing four attributes shows a slight decrease in the overall performance, in this case we

have removed too much information. While this decrease might seem rather small, since we are randomly

selecting attributes when splitting nodes within the trees, by removing four we have increased the scatter

since we are losing information. On the other hand, removing the most important attributes significantly

affects the results, regardless of how many attributes we remove. As we would expect, the reason is clear.

Since these attributes have the most information needed to subdivide the multidimensional parameter space

in order to produce accurate photo-z, removing them negatively impacts the performance of TPZ .

In a further control test we added two extra artificial variables to the data set, one of which is strongly

dependent on the source redshift, i.e. a function of redshift, while the second one is a uniformly distributed

random variable. After computing their importance rankings, we can see from Figure 3.15 that TPZ recognized
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these two extra attributes and put them on the extreme limits of the importance ranking. The most important

value ranks at about eight, the random variable ranks at one as expected, while the r magnitude is ranked

with a value close to two. We notice that the variable RG is very close to one, and therefore to a random

variable. As discussed above, we can safely remove this variable from our calculation as it does not provide

any useful information. The legend on the plot indicates also the descending order in importance, in

concordance with Figure 3.14.

Missing data

One interesting capability of TPZ is that it can be used to replace attributes in data that are either missing

attributes or have attributes with large uncertainties. As discussed in §3.2.1, the replacement values can be

computed from the proximity matrix, and we can apply this technique to data either in the training sample

or in the application sample. In the former case, missing attributes would be replaced in order to maximize

the size of the training set. The alternative would be to simply cull data with missing attributes from the

training sample, which would decrease the robustness of our predictive power. In the latter case, missing

attributes would be replaced in order to estimate a photometric redshift for a galaxy based on the incomplete

but available information. In most cases, this will still result in a reliable prediction, without discarding any

data, thereby increasing the overall statistical power of our approach.

To demonstrate this capability, we selected training and testing data sets that initially were complete and

had relatively small errors (i.e., magnitude errors < 1 magnitude). We first randomly replaced 50% of the

magnitudes in the training data with a bad value (e.g., 99), thus some galaxies in this sample have multiple

bad attributes. From this new data set, we apply TPZ to generate a second training sample where the bad

attributes have been replaced, using only six iterations (i.e, the replaced sample), and we also generate

a third training sample where we simply remove any galaxies with missing or bad attributes (i.e., the cut

sample). Likewise, we also generated a test sample with 50% of the attributes replaced by the bad value (i.e.,

the bad test sample)

We estimate photo-zs for the clean test sample by using all three training samples: the original, clean

sample (i.e., the control), the replaced attribute sample, and the cut sample. Likewise, we use the clean

training sample to replace missing attributes and estimate photo-zs for the bad test sample. We present

the results of these tests in Table 3.5, where we compare the photo-z estimation for the clean sample with

the replaced and cut samples. For this comparison, we use ∆zpp = zphot,clean − zphot,other and ∆mag =

magclean −magother, along with their variances, where other can either be the replaced or cut samples. As

shown in this Table, the replaced value sample produces, on average, superior photo-zs than the cut sample.
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Table 3.5: Photo-z estimation metrics to demonstrate the robustness of our missing attribute technique.
The first two rows show the average bias and its variance between the estimated photo-z , and replaced
magnitude when either removing or recovering bad data in comparison with photo-zs predicted using the
original, clean sample. The last row shows the the same metrics calculated by using the clean test sample,
but for data missing in the test sample as compared to the clean original sample.

Recovered train < ∆zpp >
a σ2

∆zpp
b ∆mag σ2

∆mag

with removed data -1.27 3.5 – –
with recovered data 0.40 1.6 0.021 0.094
Recovered test < ∆zpp > σ2

∆zpp
∆mag σ2

∆mag

with recovered data 0.72 4.5 0.033 0.12

ain units of 10−3

bin units of 10−3

Likewise, we have estimated robust photo-zs for the bad test sample, which significantly increases the size of

our resulting test data. Dealing with missing attributes is important , especially when a spectroscopic training

sample is limited or when cross-matching between incomplete catalogs is carried out in order to develop a

more complete catalog for photo-z estimation.

Photo-z PDFs and zConf

As discussed in §3.4.1, the zConf parameter can be used to identify galaxies with narrow, concentrated

photo-z PDFs, which ideally will result in galaxy samples that have the most accurate photo-z estimates. The

zConf parameter is demonstrated for DEEP2 galaxies in the left panel of Figure 3.16, which shows four

representative photo-z PDFs selected with different values of zConf as measured about the mean of each

PDF. Both this figure and Figure 3.6, which presents four photo-z PDFs by using SDSS data, highlight the fact

that wide and sparse distributions have low zConf values while narrower PDFs have higher zConf values.

The goal of a parameter like zConf is to algorithmically identify galaxies that have, on average, the most

accurate photo-z estimates. To test this hypothesis, we used all available DEEP2 training data to bud our

prediction trees and estimate photo-zs for the DEEP2 test sample. From this sample, we applied three zConf

cuts: 0.5, 0.7, and 0.9, and calculated the bias and scatter as a function of redshift for the three resulting

galaxy samples. We compare these results to the bias and scatter when no zConf cut is applied in the right

hand panel of Figure 3.16. As shown in this figure, both the mean absolute bias and the scatter are reduced

as zConf is increased, independent of redshift.

A simple, intuitive approach to select galaxies by their zConf would be 0.5 as this selects galaxies that

have a 50% probability that their photo-z redshift estimate lies within the limits imposed by ±σTPZ(1 + zphot).

Furthermore, higher values would provide more accurate results at the expense of reduced statistical power
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Figure 3.15: The variable importance factor, IA, as a function of redshift for the most and least important
attribute using the bias to quantify the importance ranking. As a control test, we added two artificial variables:
an attribute that is a function of the spectroscopic redshift, and a uniformly distributed random attribute.
TPZ is able to recognize these two extra attributes and rank them accordingly, as shown by the figure legend.
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Figure 3.16: (Left): Same as Figure 3.6 but for four example galaxies taken from DEEP2. The vertical dashed
line indicates the spectroscopic redshift and the gray area the zConf value. (Right): The absolute normalized
bias and the scatter for galaxy samples defined by different zConf cuts by using the mean of the photo-z
PDF as our estimate.
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(i.e., a smaller, final catalog). In Figure 3.16, for example, cuts on zConf at 0.5, 0.7 and 0.9 keep 90%, 76%

and 38% of the galaxies from the original catalog. Alternatively, given the OOB data predictive results, a

required accuracy or number density can be used to identify a suitable value of zConf .

3.5 Summary

In this chapter we introduced a supervised machine learning algorithm, TPZ , which is a three step algorithm

that first preprocesses the data, completes galaxies with missing photometric values in an efficient manner,

and also incorporates measurements errors. A photo-z PDF can be generated from the prediction trees in

one of two modes: classification or regression. Both modes produces similar accuracies, but the regression

mode is preferred when either the training data are either poorly sampled or not uniformly distributed. On

the other hand, the classification mode provides a detailed synopsis of the redshift distribution that can be

used to construct priors for use with other photo-z techniques.

We demonstrated the efficacy of the TPZ algorithm and its implementation by applying this new code to

three different data sets described in §2: the SDSS main galaxy sample, the PHAT1 blind challenge, and the

DEEP2 survey. As we will see in the next chapters, we also have successfully applied TPZ on data taken from

the CFHTLens and also from the DES survey with remarkable results in both cases. With the SL-1 sample, we

demonstrated that using confidence levels is important as they improve the overall accuracy of our photo-z

sample by selecting those galaxies with narrow PDFs. This technique is unique in the sense that it does not

need a separate validation test, yet provides ancillary information by using OOB data. We have shown that

with these data, we obtain unbiased estimates of both the bias and the dispersion, which are very similar to

the same values obtained from the test data for both the SL-1 and DP-1. Obviously, this result is extremely

important when working with data that have unknown redshifts.

TPZ not only provides these prior metrics, but it also provides a ranking of the relative importance of

the different photometric attributes that are used by the code. This completely statistical process recovers

what is naturally expected from physical consideration of these different attributes. With this importance

ranking, we can construct a heat map of the different locations in parameter space that produce poor photo-z

estimations. Furthermore, we demonstrated that by adding new, manually selected data we can produce

more accurate photo-z predication than by simply adding new galaxies randomly. This implies that we can

optimally identify new training data for current and future photometric surveys, such as DES or LSST, in

order to improve their photo-z predictions.

The attribute importance can also be used to remove those attributes that are least important, thereby
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improving the computational speed. In addition, we demonstrated that the performance metrics converge

as the number of trees increases in the forest, providing a further method to reduce the computational time

since we have a direct measure of the minimum forest size. Likewise, we also demonstrated by using the

SL-1 that these same metrics also converge with the number of training galaxies for a fixed forest size. Thus,

except for adding in manually selected training data to improve areas with poor photo-z prediction, we have

an explicit limit for the number of training galaxies needed. Finally, with this technique we found that the

error distribution was characterized by a Gaussian distribution with a mean very close to zero and variance

very close to one, indicating that the source of errors is relatively unbiased.

We ran our code on the PH-1 data with excellent results; even with limited training data we were able

to compute accurate photo-z ’s that were comparable if not better to other empirical techniques as well as

to some SED fitting techniques. By using the DP-1 redshift data, we tested TPZ over a large redshift range,

obtaining very accurate results. In particular, we were able to identify the important attributes, which in this

case was the R band magnitude followed by the I band magnitude, and the least important attributes, which

in this case was the RG attribute and the B band magnitude. Despite these impressive results, we still have a

slight systematically biased photo-z at very low and very high redshifts, which we primarily believe is caused

by the low number of training data at these redshifts and also the fact that photo-z estimates can not be

negative. We also see a positive skewness in the photo-z PDFs at high redshifts. We believe this result is due

to the fact that these galaxies tend to be fainter and have larger magnitude errors. These larger magnitude

errors produce a sparser forest at higher redshifts, which is manifested by having a lower photo-z PDF mean

value at these same redshifts.

We have also demonstrated how the zConf parameter can be used to select galaxy samples that have

improved photo-z estimates with minimal outliers. A target value for this useful parameter can be set

to a desired photo-z precision either by calculating the value expected by using OOB data or as required

by a specific cosmological requirement. Likewise, we have demonstrated how TPZ can efficiently handle

missing data within a catalog. By artificially generating bad or missing parameter values within both the

training and the testing data sets, we were not only able to robustly recover the missing parameters but more

importantly new photo-z estimates that are consistent with the photo-z estimates from the original, full data

set. Therefore, this technique increases the power of photo-z estimation by recovering missing data from the

training catalog as well as the power of our resulting sample statistics by recovering missing data from the

application data set.

Since TPZ is an empirical algorithm, it is inherent dependent on the quality of its training data. Thus,

as is the case with all empirical algorithms, TPZ is limited by the available spectroscopic training data.
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Furthermore, the application of TPZ to regions of parameter space beyond the limits of the training data (i.e.,

extrapolation) will be less reliable. We do note, however, the TPZ does provide ancillary information that

can be investigated to better understand the limitations imposed by the training set, to identify the optimal

locations within the application data space where new training data will be most useful, and to quantify

the possible errors associated with the extrapolation of this technique. In Chapter 6 we will discuss how to

improve the photo-z solution by combining multiple approaches, this consider the use of an unsupervised

machine learning approach which is fully described in the next Chapter.
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Chapter 4

Unsupervised machine learning for
photo-z: SOMz

Outline
In this chapter we explore the applicability of the unsupervised machine learning technique of Self Or-

ganizing Maps (SOM) to estimate galaxy photometric redshift probability density functions (PDFs). This

technique takes a spectroscopic training set, and maps the photometric attributes, but not the redshifts,

to a two dimensional surface by using a process of competitive learning where neurons compete to more

closely resemble the training data multidimensional space. The key feature of a SOM is that it retains the

topology of the input set, revealing correlations between the attributes that are not easily identified. We test

three different 2D topological mapping: rectangular, hexagonal, and spherical. We also explore different

implementations and boundary conditions on the map and also introduce the idea of a random atlas where

a large number of different maps are created and their individual predictions are aggregated to produce a

more robust photometric redshift PDF.

4.1 Self organized maps

Since their introduction (Kohonen, 1982), Self-Organized-Maps have been applied to a variety of scientific

problems (see e.g., Kohonen, 2001, for a detailed description of the SOMs and some of their applications). A

SOM is a type of an artificial neural network where the learning is unsupervised, there are no hidden layers,

and a direct mapping is produced between the training set and the output network. Another important

characteristic of a SOM is that the training phase of the algorithm is a competitive process, called vector

quantization, where each node or neuron in the map competes with the other nodes or neurons to become

more similar to the training data, i.e., each neuron tries to represent as closely as possible the galaxy training

set within each timestep. This fact and the use of a neighbor function, which modifies a region of spatially

close cells, make the SOM a unique tool that preserves very closely the topology of the multidimensional

spectroscopic sample. As a result, similar nodes tend to be grouped together, where, for our purpose, each

node represents galaxies with similar properties.

Figure 4.1 presents a schematic illustration of how a SOM is trained. During this phase, each node on the

two-dimensional map can be represented by weight vectors of the same dimension as the size of the training
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Figure 4.1: A schematic representation of a self organized map. The training set of n galaxies is mapped into
a two-dimensional lattice of K neurons that are represented by vectors containing the weights for each input
attribute. Note that the galaxies and the weight vectors are of the same dimension m, and that one neuron
can represent more than one training galaxy. The color of the map encodes the organization of groups of
galaxies with similar properties. The main characteristic of the SOM is that it produces a nonlinear mapping
from an m-dimensional space of attributes (e.g., magnitudes) to a two-dimensional lattice of cells or neurons.
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galaxy sample. In an iterative process, the galaxies from the training set are individually used to correct the

weight vectors so that the specific neuron (or node) that, at a given moment, best represents the input galaxy

is modified, along with the weight vectors of its neighboring neurons, to become a better representation of

the current input galaxy. This process is repeated for every galaxy; and the SOM generally converges within a

few iterations to its final form where the training data is separated into groups of similar features, illustrated

in Figure 4.1 by colors.

There are different versions of the basic SOM algorithm; however, all of them follow the same procedure

when training a map. The differences arise in the method by which the weight vectors are updated. In this

chapter, we present our results from testing two standard versions of the SOM algorithm mapped to three

different topologies for a two-dimensional lattice.

4.1.1 SOMz Algorithm

We now present a more detailed discussion of the actual SOM algorithm. First, consider a set of n input vectors

taken from the galaxy training sample, which we denote by x ∈ Rm. These vectors are m-dimensional, where

each dimension is a different, measured galaxy attribute, i.e., magnitudes, colors or any other information

about the galaxy except the actual spectroscopic redshift. Second, consider a set of K weight vectors

wk ∈ Rm where k = 1, ...,K. These K weight vectors, which correspond to different neurons, are arranged

in a two-dimensional lattice for a given topology. Initial values for the weight vectors are drawn from a

uniform random distribution.

For every nit iteration, all n galaxies from the training set are individually processed, and the weights

are modified iteratively to optimally match each galaxy. This is the procedure which produces the self-

organization of the maps and conserves the topology of the training space. When processing each training

galaxy, the weight components of the neuron that most closely matches the current galaxy are updated, along

with the weight components of the topologically closest neurons, to better represent this input entry within

the featured map. The result of this direct mapping procedure is an approximation of the galaxy training

probability distribution function, and it can be considered as a simplified representation of the attribute space

of the galaxy sample. We have implemented two different techniques: on-line and batch, to update the actual

weights of each cell.

1. On-line SOM: In this case, the weight vectors are updated recursively after processing each input galaxy.

For each galaxy, the Euclidean distance between the galaxy’s vector of attributes (denoted by x) and
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each neuron’s weight vector from the map (denoted by wk) is computed at a given timestep t:

dk(t) = d(x(t),wk(t)) =

√√√√ m∑
i=1

[xi(t)− wk,i(t)]2 (4.1)

From this list of distances, the best matching cell, or neuron, will be identified and denoted by the

subscript b, as the cell that is the closest to the galaxy at timestep t:

db(t) = min
k
dk(t) (4.2)

With this technique, however, not only is the best-matching node updated but also that node’s neigh-

boring nodes. In this manner, the entire region containing the best-matching node is identified as being

similar to the current training galaxy. This helps ensure similar nodes are co-located, which mimics how

training galaxies that have similar properties tend to be co-located in the higher dimensional parameter

space. To update the weights, we employ the following relation:

wk(t+ 1) = wk(t) + α(t)Hb,k(t)[x(t)−wk(t)] (4.3)

where α(t) is the learning-rate factor, which is reduced monotonically for each timestep. This factor

quantifies the magnitude of the correction for the cells as a function of time:

α(t) = αs

(
αe
αs

)t/(nit∗n)

(4.4)

where αs is the starting value of α, usually close to unity, αe is the ending value, and nit× n is the total

number of timesteps. Hb,k(t) is the neighborhood function that also decreases with time and with the

distance between the nodes b and k. This function quantifies the physical extent to which nodes near

to the best-matching node are also updated at every time step. The choice of the kernel’s shape for this

function does not significantly affect the results as the photo-z PDF estimation in this iterative process.

However, the kernel must be smooth, it must be symmetric to avoid biases in any direction, and it must

decrease monotonically away from the best matching node so that nodes closer to the best matching

node are more strongly updated. The Gaussian Kernel is the simplest kernel that retains all of these

features, therefore we use it in our photo-z PDF computations as:

Hb,k(t) = e−D
2
b,k/σ(t)2 (4.5)
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where Db,k is the distance between the nodes b and k which depends on the topology used.

The parameter σ(t) encodes the width of the neighborhood function that decreases with t, from a value

comparable to the size of the map σ0 to roughly the width of a single cell σf :

σ(t) = σ0

(
σf
σ0

)t/(nit∗n)

(4.6)

This procedure is applied to all n training galaxies, which are processed in a random order during each

iteration. This process is repeated for nit iterations, where just a few iterations are sufficient. As a

result, the weights are updated nit × n times during the training process, but only the last updated

weights are retained after the training process.

2. Batch SOM: This scheme is very similar to the on-line technique; however, in the batch method the

weights are updated only after each iteration is completed and not after each training galaxy has been

processed. As a result, the order in which galaxies are processed in this approach is irrelevant. The

weights wk(tit) are updated at the end of each iteration for a total of nit times by using an accumulated

sum:

wk(tit) =

∑n
j=1 H̃b,k(tit)xj∑n
j=1 H̃b,k(tit)

(4.7)

where the summation is over all n galaxies in the training sample, and tit is the timestep representing

a given iteration. H̃b,k(tit) is computed by using Equation 4.5, but in this case the best-matching node

is identified by using the weights computed at the end of the previous iteration:

d̃k(tit) = d(x(tit),wk(tit−1)) =

√√√√ m∑
i=1

[xi(tit)− wk,i(tit−1)]
2 (4.8)

and

d̃b(tit) = min
k
d̃k(tit) (4.9)

Again, recall that the weight vectors wk(tit) in the batch technique are computed at the end of the

previous iteration and kept fixed during the current one. In this case, the update of the weight vectors

is not recursive as in the on-line technique; therefore, the final map does not depend in any way on

the order in which the training galaxies are sampled. In addition, the batch technique does not use

the learning-rate α(t), which eliminates a potential source of poor convergence if this factor is not well

determined.

Figure 4.2 illustrates the SOM algorithm and highlights the difference between the two techniques we
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have employed to update the weight vectors during the training process. Both techniques are initialized in

the same manner, have common steps, and require similar running times. With the batch update technique,

however, there is no dependency on α and only the neighborhood function is updated for each time step t.

4.1.2 2D Topologies

For each of the two SOM techniques discussed in the previous section, we have implemented three different,

two-dimensional topologies: a rectangular grid with square cells, a hexagonal grid, and a grid of equal-area

cells confined to the surface of a sphere. We also include the option to use periodic boundary conditions

for the non-spherical case. Figure 4.3 presents the nodes for these three topologies constructed via the data

described in §3. Each topology has roughly the same number of cells: 784 (rectangular), 756 (hexagonal),

and 768 (spherical). For this figure we have employed the same training process using the online update

scheme for each topology, and the cell colors encode the mean redshift of the galaxies represented by each cell

after the last iteration has been completed. This simple visualization demonstrates how the SOM technique

groups galaxies together via their input parameters, while the desired predictive attribute, in this case redshift,

is only used at the end to visualize the map or to make photo-z estimations. The SOM technique, for all

three topologies, clearly groups galaxies together in the map that have similar redshifts without any specific

supervision, which is a major advantage of this method.

We now present the details of these three, two-dimensional topologies.

1. Rectangular grid: For this topology, each cell has eight direct neighbors. We calculate the distances Db,k,

which is used by Hb,k(t), between the best-matching cell and the other cells by using the Euclidean

distances Db,k =
√

(xb − xk)2 + (yb − yk)2. This topology is the standard method used to create

SOMs, and it has been extended by using periodic boundary conditions so the nodes are wrapped

on one toroidal surface. This is functionally equivalent to folding a sheet of paper into a tube, and

subsequently wrap the tube onto itself to form a torus.

2. Hexagonal grid: For this topology, each cell has six direct neighbors. We calculate the distances Db,k

between cells by using the Euclidean distances between the centers of the cells as in the rectangular

grid topology. It differs from the rectangular grid by the fact of all the neighbor’s centers are located

at the same distance which produces a smoother neighboring function. This topology can also be

extended by using periodic boundary conditions so that the nodes are effectively wrapped on to one

surface.

3. Spherical grid: This last topology naturally eliminates the problem of wrapping the nodes as the map
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Figure 4.2: A flowchart illustrating our implementation of the SOM algorithm for photo-z estimation. Online
and batch update schemes are presented on the left and right respectively.
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Figure 4.3: A comparison of the three different, two-dimensional topologies used in this work. Each topology
employs equal-area cells, where the color encodes the mean redshift of all galaxies assigned to a cell after
the training process is complete. The colorbar on the right applies to all three maps. (Left): Rectangular
grid with 784 square cells. (Central): Hexagonal grid corresponding to 756 cells with periodic boundary
conditions. (Right): Spherical grid using HEALPix with 768 cells.

is constructed directly on a continuous, two-dimensional surface. For this topology, we have used

the HEALPix1 (Górski et al., 2005) tools to construct the two-dimensional map where the cells are

constructed to have the same area as the other topologies. We calculate the distances between cells by

using the great-circle distance between the centers of each cell:

Db,k = cos−1(sinφb sinφk + cosφb cosφk cos(|θb − θk|) (4.10)

where φ and θ are the latitude and longitude respectively of the best matching cell b and the k nearest

cells.

4.1.3 Random Atlas

In machine learning, a random forest is an ensemble learning algorithm that first generates many randomized

prediction trees and subsequently combines the predictions together into a meta-prediction. Random forests

have been demonstrated (Caruana et al., 2008) to be one of the most accurate empirically trained learning

techniques for both low and high dimensional data. Since we are using self-organized maps in this work,

however, we can not construct a collection of trees as described in Chapter 3. Instead, we explore the

construction of a collection of maps, which we aggregate and call a random atlas in a similar manner as a

random forest.

Given a training sample of n galaxies that have m attributes (e.g., magnitudes), we create NM bootstrap

samples of size n (i.e., n randomly selected objects with replacement) to generate NM different maps.
1http://healpix.jpl.nasa.gov
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For each map, we can either use all available attributes and have weight vectors of the same dimensions or,

alternatively, we can randomly select a subsample of attributes for each map that reduces possible correlations

between maps. After all maps are built, a final and robust prediction can be calculated by combining all

NM estimates together. As we discussed in Chapter 3, this technique performs well when compared to other

learning techniques and is also robust against overfitting (i.e., there is no limit on the number of maps, NM ,

in the atlas)

4.1.4 SOM Implementation

In order to generate photo-z PDFs by using SOMs we have two major tasks. First, after preparing the training

data, we generate NR training samples by perturbing the measured training data attributes according to the

measured uncertainty for that attribute, which we assume to be normally distributed. In this manner, we

can incorporate the measurement error into the map construction. We also reduce the bias towards the data

and introduce randomness into the construction of the maps in a systematic manner. Second, for each newly

constructed training sample, we generate NM new maps as described previously in §4.1.3 by using bootstrap

samples.

In total, we produce NR ×NM SOMs as described in §4.1.1. After all the final weights for each map are

recorded, the galaxies for each sample are processed again by using those weights and are assigned to one

of the K cells belonging to each map. This ensures that each cell in each map represents a subsample of

galaxies that have similar characteristics. To compute a photo-z, we process each galaxy in the test sample

(i.e., the photometric data) and determine which cell in each map best represents this galaxy. We repeat this

procedure for all SOMs; and, when this is completed, we combine the predictions from all of the maps into

a single probability density function that is normalized by the total number of predictions. In this manner,

each map contributes equally to the final PDF.

This process is demonstrated for one example map in Figure 4.4, where the evolution of one SOM is

sampled at different iterations using online updating. As before, the colors encode the mean redshift of

the galaxies represented by each cell during each iteration. From this figure, we see that even at the first

iteration there is a slight separation that quickly changes with time until convergence to the final distribution

is achieved and galaxies with similar redshifts are spatially grouped in a self-organized manner.
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Figure 4.4: Evolution of the SOM at different iterations using the spherical topology and online updating.
Colors encode the mean redshift of the galaxy being represented by each cell at each iteration as defined by
the colorbar, similar to the one in Figure 4.3.

4.2 Results

In this section, we compare the results of our SOM implementation by using different parameter configura-

tions with the DEEP2 data DP-1, introduced in §2.3. To compare different applications of this algorithm, we

define the bias to be ∆z′ = |zphot − zspec|/(1 + zspec), and we present the standard metrics used to compare

the accuracy of the different SOMs in Table 4.1. As shown in this table, we define several metrics to address

the bias and the variance of the results (the first five rows) and also present three values to characterize the

outlier fraction.

We have introduced the quantity KS, which represents the results of a Kolmogorov–Smirnov test to

address whether the predicted photo-z distribution and the spectroscopic redshift distribution are drawn

from the same underlying population. We present this new statistic since it provides one robust value to

compare both distributions that does not depend on how we bin in redshift and it is defined as the maximum

distance between both empirical distributions. For this statistic, we compute the empirical cumulative

distribution function (ECDF) for both distributions. For the spectroscopic sample the ECDF is defined as:

Fspec(z) =

N∑
i=1

Ωzispec<z
(4.11)
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Table 4.1: Definition of the metrics used in the text to present and discuss the results,

Metric Meaning
< ∆z′ > mean of ∆z′

|∆z′|50 median of ∆z′

σ∆z′ Standard deviation of ∆z′

σ68 Sigma value at which 68% of ∆z′ is enclosed
σMAD Median absolute deviation = median(||∆z′ − |∆z′|50||)
KS Kolmogorov - Smirnov statistic for N(z)
out0.1 Fraction of outliers where ∆z′ > 0.1
out2σ Fraction of outliers where |∆z′− < ∆z′ > | > 2σ∆z′

out3σ Fraction of outliers where |∆z′− < ∆z′ > | > 3σ∆z′

where N is the number of galaxies in the redshift sample, and

Ωzispec<z
=


1, if zspec,i < z

0, otherwise
(4.12)

The summation is carried out over all galaxies in the sample. Having computed the ECDF for both the photo-z

and spectroscopic distributions, we compute the KS statistic as:

KS = max
z

(||Fphot(z)− Fspec(z)||) (4.13)

As a result, as the KS statistic decreases, the two distributions become more similar.

All of the metrics listed in Table 4.1 are defined such that a lower value for the computed metric indicates

a better overall photo-z solution. We have defined a new, meta-statistic, which we call I-score (symbolically

represented by I∆z′), to more easily compare different SOM parameter configurations (i.e., online or batch

and a specific 2D topology) or different photo-z estimation techniques. For this new meta-statistic, we first

must normalize each set of metrics across all different photo-z estimations so that we are not biased by

different dynamic ranges. Thus, for example, we first compute the mean and standard deviation for < ∆z′ >,

and subsequently rescale all individual < ∆z′ > values so that this set of values has zero mean and unit

variance.

We continue this process for all nine statistics listed in Table 4.1, and compute their weighted sum to

obtain the I-score:

I∆z′ =
∑Mi

wi
, (4.14)

where Mi is the rescaled metric and weight value for metric i out of the nine available. For simplicity, we

use equal weights in the remainder of this thesis (and thus the I-score is simply the average of the nine
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rescaled metrics for each technique). As a result, the photo-z method (or parameter configuration) with the

lowest I-score will be the optimal estimation technique. On the other hand, if we are looking for a technique

or parameters configuration with, for instance, a lower outlier fraction, we could assign a higher weights

accordingly to account for it. In this way, we can efficiently select the best method or configuration for

specific needs.

4.3 Discussion

In order to explore the effects of different parameter configurations on the performance of our SOM photo-z

implementation, we conducted twenty different tests and compare their I-score results in Table 4.2 by using

six colors from the DEEP2 data: B −R, R− I, u− g, g− r, r− i, and i− z. These configurations include the

use of all three topologies discussed in §4.1.2: Hexagonal (hex), Rectangular (rec) and Spherical (sph); the

use of online or batch methods to update the weights as shown in Figure 4.2; and the use of a Random Atlas

where different maps are built using random subsets (random = yes) of four colors or single maps where all

six colors are used (random = no), which gives twelve different configurations. In addition, both rectangular

and hexagonal topologies were used with both periodic and non-periodic boundary conditions (spherical is

by definition wrapped), which gives us an additional eight configurations.

We determined the best values for the other parameters in our SOM photo-z implementation, which

were then fixed for all twenty tests, by using an Out-Of-Bag data (similar to a validation sample) technique

we presented in Chapter 3. For example, we set the values αs and αe in Equation 4.4 to be 0.9 and 0.5

respectively. In addition, each random atlas contains 100 different maps and each topology contained

approximately 800 cells in a given map. All galaxies in the test sample were used for each run. The results,

averaged over ten realizations, are presented in Table 4.2 for all the metrics, where we have used the mean

redshift in place of each PDF for simplicity. Note that the last column is the I-score. For clarity, we highlight

in red the best value for a particular metric.

We compare these different parameter configurations visually in Figure 4.5, where the twenty runs

are plotted in terms of their bias and I-score values. In this figure, different symbols represent different

topologies (squares for rectangular, diamonds for hexagonal and circles for spherical), colors represent the

update method used (blue for online update and red for batch update).

The curves enclose all test results that either use a random subsample of attributes (purple) or all

attributes (green) on each map inside the atlas. Note that the separation of these two groups of tests is a

direct output from our SOM photo-z implementation. Finally, we highlight if periodic boundary conditions
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Figure 4.5: The I-score, I∆z′ as a function of the bias, < ∆z′ > for all twenty methods discussed in the text,
averaged over ten different realizations for all galaxies (10,227) in the test sample. Enclosed by a green
curve are the results of using all attributes on each map of the atlas and enclosed in purple the results when
a random atlas was used. Blue symbols indicate an online update of the weights, while red symbols indicates
a batch update. The symbols themselves represent different topologies and the white cross indicates periodic
boundary conditions.

were used for rectangular or hexagonal topology by a white cross.

Overall, from both Table 4.2 and Figure 4.5, the best set parameter configuration is spherical topology

with an online update using random atlas. This run has metrics that are the closest to the best values and it

has the lowest I-score value. In the rest of this section, we explore the results of these different parameter

configurations in more detail.

4.3.1 Random atlas

The first parameter configuration we examine is the use of a random atlas. As shown in Table 4.2 or Figure

4.5, there is a clear, albeit numerically small difference between the performance of our SOM algorithm with
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and without the use of random subsampling of attributes. This finding is remarkably similar to the result we

discussed in Chapter 3 where a random forest was shown to be superior to prediction trees that used the full

set of attributes. The likely explanation is the random sampling of attributes when building the maps (trees)

for a random atlas (forest) more completely explores the set of attribute combinations than when using all

attributes.

These maps are constructed using Bootstrap sampling; thus by definition all maps are different although

they are likely to be highly correlated, which will yield stable results after a certain number of maps have

been generated. When using random sampling of the attributes, however, we are by definition introducing

extra variation into the algorithm. This can reduce the noise variables that will always contribute when all

attributes are included, and will on average yield better statistics when a large number of maps are generated

so that all variables are used multiple times in different combinations for different maps. For example, if

we construct 100 maps where each map is constructed by randomly selecting four color attributes out of six

possible colors, we can be sure all attribute combinations (in this case 15) are sufficiently covered.

The appropriate number of attributes to be randomly selected when constructing a random atlas can

be determined either by testing the algorithm using Out-Of-Bag (Carrasco Kind & Brunner, 2013a) data on

previous runs or by selecting a value somewhere between the total number of attributes and the number of

dimensions of the SOM (in this case we have a two-dimensional topology). Alternatively, in Chapter 3 we

discussed using
√
M , where M is the set of attributes, although this is likely too small for lower dimensional

problems. A reasonable compromise might be to simply use 2/3 of the attributes when constructing each

map.

We test the dependence of the random atlas on the number of input attributes by constructing two

hundred maps using a spherical topology with online updating and only changing the number of attributes

that are used for the random sampling. The results are presented in Table 4.3, where our I-score statistic

indicates that four attributes are optimal (as well as two other metrics). However, it is interesting to note

that three attributes perform only moderately worse than four, and that two attributes show comparable

performance to either five or six attributes. We found similar results by using other parameter configurations

(i.e., varying the topology and update method), suggesting the optimal number of attributes is dependent on

the data themselves.

One last observation from the data presented in Table 4.2 is that all metrics have their lowest values

when using random sampling, expect for the KS statistic. This means that, on average, using all attributes

produces an N(z) from the training sample that seems to be a better match to the spectroscopic sample than

when using random subsamples (i.e., the N(z) ECDFs are more similar). This is most likely a result of the
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Table 4.3: Performance of the SOM algorithm by using a spherical topology with an online update for
different number of attributes used in the construction of the random atlas

Attributes < ∆z′ > σ∆z′ KS out0.1 I∆z′

1 0.0903 0.1023 0.1852 0.3153 1.6830
2 0.0558 0.0659 0.1229 0.1379 -0.2452
3 0.0446 0.0607 0.0846 0.0885 -0.4636
4 0.0432 0.0610 0.0767 0.0784 -0.4754
5 0.0422 0.0633 0.0614 0.0824 -0.2726
6 0.0436 0.0653 0.0583 0.0886 -0.2262

fact that a random atlas prediction produces a photo-z PDF that has a smaller bias and scatter (as shown

in Table 4.2) and is thus more strongly peaked about the mean value than a photo-z PDF that does not use

random sampling. When simply using the mean value from a PDF, the N(z) ECDF will thus be more strongly

concentrated about the mean leading to a higher KS statistic. As we will show, by using the full photo-z PDF

when constructing the sample N(z), we generate a more realistic redshift distribution that reduces the KS

statistic by a factor of a few, reinforcing this interpretation.

4.3.2 Weights updating

The second parameter we explore is the method used to update the weights that control how cells in the final

topology are modified. Both Table 4.2 and Figure 4.5 demonstrate that the online weight updating method

consistently performs better, when all other parameters are kept fixed, than the batch updating method. We

interpret this difference as a manifestation of the dynamic nature of online updating, where the weights are

updated after analyzing each galaxy, as opposed to the once an iteration update that is performed with the

batch method. As a result, the online method will easily converge given a sufficient number of iterations and

will produce a more accurate topological mapping. On the other hand, the batch method is nearly parameter

free, while the online method depends on the parameter α. In addition, the batch method is computationally

faster since the number of weight updates is considerably smaller than the online method, and the batch

method is easier to scale to big data since the processing is inherently parallel.

4.3.3 Topologies

The next parameter we tested is the type of two-dimensional topology used for the SOM. Although not as

obvious as the previous two parameters, the results suggest that spherical topology is superior than either

the rectangular or the hexagonal grids, when given approximately equal number of cells and when using a

random atlas (we note that when using the full attribute set the hexagonal topology slightly outperforms the
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spherical topology). Given the nature of the spherical topology, a direct comparison is only realistic when we

compare to periodic boundary conditions for rectangular and hexagonal topologies.

Although we explore the effect of the map size on the performance of this algorithm in subsection 4.3.6,

we note that since we use the HEALPIX scheme to characterize the spherical topology, we are implicitly

constrained in the number of cells in our final map, which is given by ncells = 12 × nside2 where nside is a

power of 2. For these tests, we used nside = 8 which corresponds to 768 cells. By using this relation, the next

map size for a spherical topology would be 3072 cells, which nearly equals the number of galaxies in our

training sample, and is, therefore, too large for this particular problem. This is a limitation of the spherical

topology, as both the rectangular and hexagonal topologies are not restricted in this manner; thus we might

be able to fine tune the number of cells in these alternative topologies in order to outperform the spherical

topology. We do not, however, test this hypothesis in this thesis.

Since we use the HEALPIX representation for spherical topology, we consider that the natural periodicity

of this topology is superior to the forced periodicity with the rectangular and hexagonal topologies. HEALPIX

generates equal-area cells and the cell centers are naturally aligned along the same latitude. Thus, it is rea-

sonable to expect that the HEALPIX scheme produces cell weights that more closely match the spectroscopic

data set. On the other hand, we have no natural driver to choose between rectangular or hexagonal, and,

depending on the value of the other algorithm parameters one may outperform the other.

4.3.4 Periodicity

Next, we look at the use of periodic boundary conditions, which from the results presented in Figure 4.5 and

Table 4.2 appear to, in general, outperform the non-periodic boundary conditions (with the understanding

that the spherical topology is implicitly periodic). Specifically, when comparing periodic (solid colors) and

non periodic cases (white crosses) in Figure 4.5 for the hexagonal and rectangular topologies, the periodic

case performs slightly better, although this is not universally true.

While the redshift distribution of our training sample data are limited to the range 0 ≤ z ≤ 1.5, the

SOM mapping process has no such restrictions when optimizing the topological mapping, for example when

processing the colors of the galaxies. On the other hand, non-periodic conditions might work better for

classification problems where clear separation is desired between classes of objects (e.g., star versus galaxy);

but in a regression problem, like photo-z estimation, a clear separation is not necessarily desired as we do

not want to bias the mapping either away from or specifically towards any particular region of the parameter

space.
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4.3.5 Other parameters

Besides the previously discussed parameters, our SOM algorithm does not depend on many other parameters

(and of course the SOM can be applied in a non-parametric manner). One parameter that must be specified

when using online updating, however, is the learning rate factor, α. This parameter quantifies the correction

applied to each cell at each time step, and can take values from 1.0 (maximal correction) to some minimum

value, often close to 0.5. In the end, the SOM algorithm is not extremely sensitive to this parameter as the

neighborhood function exerts more control over the corrections applied to the neighboring cells. We do

acknowledge that, if the number of iterations is limited, this factor might become more important since fewer

corrections will be applied.

Another parameter to specify is the number of iterations to use when constructing the SOM, as we need

a sufficient number to generate a map that truly represents the data appropriately. This number will depend

on both the size of the input data set and the number of cells in the map. For the example discussed herein,

we found that 100 iterations were sufficient. For a larger data problem, the number of iterations should be

increased, with the exact value determined empirically by, for example, terminating the iterative process

if the map changes by some value (e.g., 1%) or if the map evaluation does not change beyond some small

tolerance.

As an example, Figure 4.4 demonstrates how a spherical topology map changes in nine different steps

during 300 iterations using the online updating scheme. In each map, the color of a cell encodes the mean

redshift of all galaxies within that cell after each evaluation. After the first evaluation, the map is not fully

populated, thus only some of the cells are populated. The iteration process, however, quickly begins to

populate the cells and by iteration 113 (middle left image) the map becomes fairly stable with only a few

empty cells. The last three maps (iterations 225, 263, and 300 left-to-right in the bottom row) are nearly

identical, demonstrating how the iterative process has essentially converged and the map can be used for

photo-z predictions.

4.3.6 Size of map and size of atlas

The two algorithm parameters that remain to be identified are the number of cells to use within an individual

map, and the number of maps to use within a random atlas. We explore the effects of changing one of these

parameters while keeping the other fixed in Figure 4.6, where the top panel identifies the dependence on the

number of maps used in a random atlas, keeping the size of each map fixed at 756 cells, while the bottom

panel highlights the dependence on the number of cells in an individual map, keeping the number of maps

fixed at 100. In both panels, we use four metrics to quantify the performance of the SOM: the bias < ∆z′ >
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Figure 4.6: Bias < ∆z′ > (blue), scatter σ∆z′ (green), KS (red) and I∆z′ (black) as a function of the number
of maps contained in the random atlas with fixed map size of 756 cells (top panel), and as a function of map
size keeping fixed the number of maps (100) in the random atlas (bottom).

(blue), the scatter σ∆z′ (green), the KS statistic (red), and the I-score I∆z′ (black).

As shown in the top panel, where we have constructed a SOM using hexagonal topology with online

updating and a fixed number of cells in each map, increasing the number of maps in the random atlas does

improve the performance and reduces the value of these metrics. At some point, however, adding more maps

does not produce any improvements as all possible parameter combinations have been included in the atlas

a few times and new maps become redundant. On the other hand, as shown in the bottom panel, increasing

the number of cells with a single map will also improve the value of the metrics.

Eventually, however, the mean number of sources per cell decreases to the point where we have empty

cells with no predictive power, and we also suffer from over-fitting. This primarily affects the fraction of

outliers and subsequently the I-score, which depends on all of the metrics. Thus we find an optimal size (for

this particular data set) of approximately 1500 cells. This confirms the results presented by Way & Klose

(2012) who also found that increasing the number of cells in a map produces better results until over-fitting

affects the metrics.

4.3.7 Photo-z PDF using SOMs

For simplicity, to this point we have compared the different SOM configurations and overall performance by

simply using a single predictive value (in this case, the mean value of the photo-z PDF). As we discussed in

§4.1.1, however, the SOM technique generates a full probability distribution function for the photometric
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Figure 4.7: N(z) (top) and absolute error (bottom) for the galaxies used to compute Figure 4.8, showing
the difference by using the mean, the mode and a stacked photo-z PDF in which the full photo-z PDF of
individual galaxies are summed together.

Figure 4.8: Spectroscopic redshift versus photometric redshift estimated by using a SOM for (left) the
mean of the photo-z PDF and (right) the full photo-z PDF. In both panels, we use an identical number of
pixels to construct the image and also use the same number of contours to present the color-mapping. The
galaxies used to make this image were selected in an identical manner with zConf > 0.7 (with a total of
8387 galaxies) from the DEEP2 survey. The black dots are the median values of zphot and the errors bars
correspond to the tenth and ninetieth percentiles within a given spectroscopic bin of width ∆z = 0.1.
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redshift of each individual galaxy. We can use all of the information encoded in these PDFs when making

cosmological measurements. For example, we can more accurately compute the sample redshift distribution,

N(z), which is used in a variety of cosmological measurements, by including the full photo-z PDF.

This can be seen from the data in Table 4.2, where the best KS statistic, which is a measurement of how

well the true N(z) is recovered, is 0.0615, which was computed by using the mean of the PDF. If on the other

hand we use the full photo-z PDF, this same metric value is 0.0221, which is almost a factor of three better.

This value of a KS statistic is traditionally interpreted in that we cannot reject the null hypothesis (that both

the spectroscopic and the photometric distributions are the same) at a 5% level.

We explicitly compare the spectroscopic N(z) to the measured N(z) distributions computed by using

the mean of the photo-z PDF (blue line), the mode of the photo-z PDF (green line), and the full photo-z

PDF (red line) in the top panel of Figure 4.7. In addition, the bottom panel displays the absolute error

between the spectroscopic N(z) and these three different measured N(z) distributions. In both panels, the

full photo-z PDF is clearly shown to more closely match the spectroscopic distribution, a result that we also

saw in Chapter 3 with photo-z PDFs generated by using TPZ . This simple test highlights the power of using

the full information provided by a photo-z PDF.

In general, computing other metrics, such as the bias or scatter, by using the photo-z PDF will produce

slightly larger values than simply using the mean of the photo-z PDF, since for these simpler metrics the

mean is a sufficient estimator of the full PDF, while the full PDF adds information from other bins, decreasing

the precision to which these metrics are computed. While these metrics are primarily useful in merely

characterizing the approximate accuracy of the algorithm, it is still important that these metrics are symmetric

and unbiased as a function of redshift (which confirms the lack of any systematic biases in the algorithm).

Following our previous definition of zConf from Chapter 3 (i.e., the integrated probability between

zphot ± σSOM (1 + zphot), where we have set the expected scatter σSOM = 0.075), we compare spectroscopic

versus photometric redshift in Figure 4.8 by using the mean of the PDF (left panel) and full PDF (right

panel) for exact same 8387 galaxies selected to have zConf > 0.7. Both panels are constructed from the

same galaxy sample, share the same number of pixels, and have the same number of contours (although the

dynamic range of the contours varies). The over plotted black dots and error bars convey the median and

tenth and ninetieth percentiles, respectively, for spectroscopic bins of width ∆z = 0.1

By construction, the galaxies used for Figure 4.8 all have a concentrated photo-z PDF, and as shown in

Figure 4.8, by using the mean of the photo-z PDF we have a tight, symmetric relationship. This reaffirms the

conclusion found in Chapter 3 —but this time for a SOM photo-z PDF— that the zConf value can be used to

identify galaxies with accurate photo-z estimates. Although the photo-z PDF provides a more accurate N(z)
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relationship, by using the mean of the photo-z PDF we generate a slightly tighter correlation. On the other

hand, the full photo-z PDF generally produces a more symmetric distribution, which can be seen both from

this figure and the median values, except for the last two bins that suffer from low numbers as seen in Figure

4.7. As a result, the final choice of using the full PDF or a particular statistic characterizing the full photo-z

PDF should be empirically quantified as it will likely depend on the particular problem under study.

4.3.8 Comparison with TPZ

As SOMz used herein is an unsupervised learning method, it can be illustrative to compare this new method

to an existing, supervised learning method. As we borrow many techniques in this chapter from our random

forest technique outlined in Chapter 3, in this section we compare the performance of SOMz with TPZ ,

specifically focusing on the results computed by using both methods for the DEEP2 dataset compiled by

Matthews et al. (2013). The SOM results were produced by using a random atlas with spherical topology

and online updating, while the TPZ results were produced by using the regression mode with 100 trees and

m∗ = 3 (explained in Chapter 3) generating PDFs of the same redshift resolution ∆z = 0.012. As the SOM

results were generated by using galaxy colors, we ran TPZ by using the same colors and the same training set

used to generate the SOM results.

We present a summary of key statistics from these two estimation methods in Table 4.4. From the end

results of each technique, we create three subsamples by splitting on the zConf value. The first observation

from these values is the similar performance of both techniques, which is somewhat surprising given the

differences between the two algorithms. On the other hand, it seems likely that the randomness feature in

our implementation of the random forest and the random atlas algorithms both improve the performances

of these algorithms to a similar degree. When constructing a photo-z PDF, the full multi-dimensional space

is subdivided (TPZ is a supervised process while SOMz is an unsupervised process) into smaller volumes,

which, in both cases, contain galaxies with similar properties, that are subsequently used to make redshift

predictions.

The second observation from this table is that for some metrics the random forest implementation is

superior, while for others the random atlas implementation wins. Given this observation, and the inherent

differences between the two approaches, it seems reasonable to want to explore the combination of the

predictions from disparate learning methods. We have already started to address this issue by exploring

how the performance of the photo-z approach is improved when combining techniques (Carrasco Kind

& Brunner, 2013b). We defer further discussion of this topic to chapter 6 and Carrasco Kind & Brunner

(2014c), where we will explore the development of meta-classifiers that combine supervised, unsupervised,
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Table 4.4: A summary of key metrics that were computed by using the same datasets for solutions provided
by the SOM algorithm and TPZ . The number in parenthesis is the zConf value used on each case.

Method < ∆z′ > σ∆z′ KS KSPDF out0.1

SOM (0.5) 0.0417 0.0608 0.0659 0.0311 0.0803
TPZ (0.5) 0.0408 0.0640 0.0352 0.0175 0.0808
SOM (0.7) 0.0382 0.0586 0.0621 0.0307 0.0660
TPZ (0.7) 0.0374 0.0594 0.0320 0.0162 0.0664
SOM(0.9) 0.0318 0.0520 0.0620 0.0304 0.0427
TPZ (0.9) 0.0306 0.0516 0.0294 0.0157 0.0430

and template-fitting techniques to make more accurate photo-z PDF estimations.

4.4 Summary

We have presented a new approach that computes a photo-z PDF with similar performance as other machine

learning techniques that we call SOMz. This new approach is an unsupervised machine learning algorithm

that uses Self-Organized-Maps, which project the muti-dimensional space of attributes (magnitudes or colors)

to a 2 dimensional map that attempts to conserve the topology of the higher dimensional data. Each neuron

or cell in the map is updated after each galaxy is processed by means of weights that are iteratively corrected

in order to better represent the training data. The spectroscopic target information is not used at all in the

process of building the maps, although it is used to identify the galaxies that belong to a cell in order to

make predictions from the two-dimensional map. In this Chapter we introduce the concept of a random atlas,

in analogy to a random forest for decision trees, in which a number of different maps are created whose

individual predictions are subsequently aggregated to produce a final photo-z PDF.

We also explored the different configurations that can be used to build a SOM, and introduce a new metric,

the I-score, which efficiently takes into account different metrics indicators of the overall performance, such

as, the bias, the scatter or how well the photometric redshift distribution matches the spectroscopic one, in

order to differentiate these configurations. We found that by using a random subsample of attributes to build

different maps we can produce a significantly better solution than by using all the attributes, which works

similarly to the random forest for prediction trees. We explored two approaches to updating the weights for

each cell in the final two-dimensional map. The first technique is called online updating, in which all weights

are updated dynamically after processing each galaxy. The second is called batch updating, in which the

galaxy weights are applied en masse after each iteration. Our testing indicates that online updating produces

more accurate photo-z estimates, but is also harder to parallelize, which can be a limitation when applied to

very large data sets. On the other hand, the batch method is easier to parallelize as the cumulative work can
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be done in blocks on different cores, but is slightly less precise since the weights are updated less frequently.

The SOM process constructs a two-dimensional topology; thus we also explored three different represen-

tations for this final map: rectangular, hexagonal, and spherical grids. While the rectangular and hexagonal

grids showed similar performance, we found that the spherical grid performed slightly better, likely due to

its natural lack of boundary conditions that avoid biases near the edge of the grid. For the other two, flat

grids we also imposed wrapped, periodic boundary conditions, but they still perform slightly worse than

the spherical topology when using approximately the same number of cells. Overall, however, we do see

that wrapping the two-dimensional grids (either naturally, or with imposed periodic boundary conditions)

provides a better two-dimensional representation of the multi-color space occupied by the galaxies in our

analysis.

On the other hand, other SOM parameters had less of an effect on the final photo-z calculation. First,

the number of iterations must be large enough to allow convergence. Second, if using the online method,

the degree of correctiveness needs to be close to unity, while the batch method lacks this parameter. We

also explored the effect of the number of cells used to construct a given map and the number of maps in a

random atlas. For the former, we find that an improvement in the photo-z estimation can be achieved, but

the process is limited, depending on the training data volume, as eventually we can suffer from over–fitting.

For the latter, we found that after a few hundred maps, the random atlas has effectively been populated

by all possible parameter configurations and no new information is added with additional maps. For our

demonstration example, we found an ideal combination of approximately 1500 cells and 200 maps produced

the optimal photo-z predictions.

While our new, unsupervised approach presented herein performs to a similar degree of accuracy as

previous, supervised techniques, including our own TPZ algorithm presented in Chapter 3, there are different

strengths and weaknesses of each approach. As a result, we have explored how to optimally combine

different photo-z estimation techniques, including the use of supervised, unsupervised, and template fitting

techniques (which is described in the next Chapter) into a meta-algorithm to both produce more accurate

photo-z estimates as well as an improved identification of prediction outliers. This will be discussed in the

next two Chapters.
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Chapter 5

Spectral energy distribution fitting for
photo-z: BPZ

Outline
In this Chapter we review and discuss some new work on a template fitting approach using Bayesian

techniques. This is an independent approach with the advantage that it doesn’t need a training set as long

a high-quality and representative library of SED is available. We explore the applicability of BPZ (Benı́tez,

2000) on our datasets and demonstrated that when a spectroscopic training exists we can build a prior

probability distribution using a functional form or a Naive Bayesian Classifier we can improve the overall

photo-z solution.

In the last two chapters we have discussed two empirical techniques to compute photometric redshifts ans

we have discussed the limitations of these training methods. One critical aspect is that these methods

can perform remarkably well provided that a high quality and representative training set is available. This

training set must contain galaxies with properties similar to those whose redshift are computed. This, by itself,

represents a challenge especially if the redshift or the color distributions span a large range of galaxies. For

example, computing photo-z ’s at higher redshifts than the spectroscopic sample or in areas of the magnitude

space poorly sampled is less reliable. We studied this issue in Chapter 3 by computing ancillary information

to understand the data, its limitations and the sample variance, but this doesn’t necessarily solve the problem.

Instead, we can use standard techniques to compute photo-z by fitting the observed magnitudes using a set

of calibrated galaxy templates where not training data is necessary. This method, however, relies on how

representative is the template library used. In this chapter we introduced the template fitting approach to

complement what we have developed to make more accurate and reliable photo-z predictions.

5.1 Bayesian Photometric Redshift

Using spectral templates to estimate galaxy photo-zs from broadband photometry has a long history (Baum,

1962); and this approach is, not surprisingly, one of the most utilized techniques. A primary advantage

of this technique is the fact that a training sample is not required, thus this approach can be considered
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unsupervised. On the other hand, this technique has the disadvantage that a complete and representative

library of spectral energy distributions (SEDs) are required. Thus any incompleteness in our knowledge of

the template SEDs that fully span the input galaxy photometry will lead to inaccuracies or mis-estimates in

the computation of a galaxy photo-z.

A number of different groups have published template fitting photo-z estimation methods, all of which

are roughly similar in nature. For this thesis, we have modified and parallelized one of the most popular,

publicly available template fitting algorithms, BPZ (Beńıtez, 2000). BPZ uses Bayesian inference to quantify

the relative probability that each template matches the galaxy input photometry and determines a photo-z

PDF by computing the posterior probability that a given galaxy is at a particular redshift. One advantage of

using Bayesian statistics is its simplicity. From Bayesian statistics we know that the product rule states that

the joint probability of a variable x and a variable y (for both to be true) is given by:

P (x, y) = P (y | x)P (y) (5.1)

where P (y | x) is the conditional probability of the variable y given the information about variable x. Since

P (x, y) = P (y, x) by construction we can easily derive Bayes theorem in the following form:

P (x | y) =
P (y | x)P (x)

P (y)
(5.2)

where in this example, P (x | y) is called the posterior distribution of variable x (Usually the parameter space),

P (y | x) is the likelihood of getting y given the variable x, P (x) is the prior probability which encodes the

information on the distribution of the variable x and P (y) is called the evidence which acts as a normalization

factor, useful when multiple hypothesis are being tested. Another important rule in this Bayesian framework

is the sum rule in which we can write P (x) as:

P (x) =
∑
y

P (x, y) (5.3)

where we marginalize over all possible values of the variable y. In the case we have a set of variables in n

dimensions y = {yi} we can write the above as:

P (x) =
∑

y1,y2,...,yn

P (x, y1, y2, . . . , yn) (5.4)
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On the other hand if the set yi is mutually exclusive then we have:

P (x, y1, y2, . . . , yn) = P (x)

n∏
i=1

P (yi | x) (5.5)

5.2 Likelihood estimation

When applying the previous set of rules to the photo-z inference we can write this probability as P (z | x, vecI)

for a specific template t, where x represents a given set of magnitudes (or colors) and I represents any kind of

extra information for computing the posterior probability of the hypothesis. If the identification of a specific

template is not required, we can later marginalize over the entire set of templates T.

By using Bayes theorem, we have:

P (z | x, I) =
∑
t∈T

P (z, t | x, I) ∝
∑
t∈T

L(x | z, t, I)P (z, t | I) (5.6)

L(x | z, t, I) is the likelihood that, for a given redshift z and spectral template t, a specific galaxy has the set

of magnitudes (or colors) x. All the extra knowledge given by I will be affect only in the prior but not in the

likelihood, therefore we can simply write this likelihood as: L(x | z, t)

P (z, t | I) is the prior probability of a specific galaxy is at redshift z and has spectral type t given the

information I. This information can be computed from physical models of the galaxy distribution or can

be refined if a spectroscopic sample if one is available. The photo-z PDF is, therefore, either the posterior

probability, if a prior is used, or the likelihood itself if no prior is used. This last point arises since the

likelihood only depends on the collection of template SEDs; and, if this collection is representative of the

overall galaxy sample, the likelihood can be used by itself as a photo-z PDF even without a spectroscopic

training sample.

As the goal of a template fitting method is to minimize the difference between observed and theoretical

magnitudes (or colors), this approach is heavily dependent on both the library of galaxy SED templates

that are used for the computation and the accuracy of the transmission functions for the filters used for

particular survey. SED libraries are generally built from a base set of SED templates. These base templates

broadly cover the Elliptical, Spiral, and Irregular categories, and a template library can be constructed by

interpolating between the base spectral templates to create new spectra. One of the most widely used set

of base templates are the four CWW spectra (Coleman et al., 1980), which include an Elliptical, an Sba, an

Sbb, and an Irregular galaxy template. When extending an analysis to higher redshift, these temples are

often augmented with two star bursting galaxy templates published by Kinney et al. (1996). One additional
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Figure 5.1: The SED templates in the rest frame extracted from the CWW library used in this thesis. For
reference only it also shown the interpolation between the given templates (on thicker lines) from Elliptical
galaxies (red) to Irregular galaxies (blue).
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Figure 5.2: An Elliptical galaxy spectrum at z=0 and redshifted to z = 0.4 overlaid by the eight photometric
filters from the DEEP2 galaxy survey (3 from the original survey and ugriz from a matched catalog (Matthews
et al., 2013)) as also described in §2.3.

effect some template approaches consider is the presence of interstellar dust, which will introduce artificial

reddening. Figure 5.2 shows an example of a library of galaxy SED taken from Coleman et al. (1980) which

have been interpolated to expand it when computing the likelihood and the prior by the algorithm. We can

observe from this Figure the different spectral features expected to be observed in our galaxy sample like the

4000 Åbreak on elliptical galaxies or the [OII] and [OIII] emission lines in case of a Irregular galaxy.

Once the library of galaxy SED templates has been constructed, the templates are convolved with the

transmission functions for a particular survey to generate synthetic magnitudes as a function of redshift for

each galaxy template. For the most accurate results, these transmission functions should include the effects

of the Earth’s atmosphere (if the observations are ground-based), as well as all telescope and instrument

effects. This convolution process is demonstrated visually in Figure 5.2, which presents an example Elliptical

galaxy spectral template at redshift zero and at a redshift 0.4. Overplotted on this figure is the filter set (B,

R, and I) used by the DEEP2 survey, which is the data analyzed in this paper, along with the five extra filters:

u, g, r, i, z presented in the DEEP2 photometry catalog compiled by Matthews et al. (2013) as described in

§2.3.

When this process is completed we will have a multidimensional space of magnitudes (or colors) and

redshifts which can be explored, by maximizing the Likelihood (or minimizing the χ2 statistics) to find the

combination that best represent each galaxy at the time of being processed. Figure 5.3 shows an example

on how, by maximizing the Likelihood L(x | z, t), is it possible to obtain a reasonable good fit based on the
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Figure 5.3: Example of one galaxy magnitudes and their errors (red dots) being fit by maximizing the
likelihood using a library of galaxy templates at a several redshifts, the best fit is shown in solid black.

magnitudes if the galaxy. In this case the galaxy was taken from the DP-1 sample (from Chapter 2) and from

a set of libraries which are convolved to transform them to magnitudes and redshifted the template that best

represent the observations (red points) at a particular redshift z = 0.51 is shown as a black line. Note that

we are able to fit a template to this data regardless of extra information about how likely is one template

over another at this redshift or how likely is a template give a particular set of colors and/or magnitudes.

5.3 Prior information

As discussed before, it is possible to use only the maximization of the Likelihood in order to get a photo-z

PDF if not extra knowledge is available. The use of a prior in a Bayesian analysis, however, is recommended

as it can provide more accurate probabilities and can help to easily discriminate, in this application between

two templates of galaxies or two similar redshift values with similar likelihood values.

5.3.1 Empirical function as a prior

For the photo-z computations, the prior probability can be computed directly from physical assumptions,

from an empirical function calibrated by using a spectroscopic training sample (e.g., Beńıtez, 2000), or from

an empirical function calibrated by using machine learning techniques. For example, Beńıtez (2000) propose

the following prior function for the information I given by a single magnitude m0, usually the reference
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magnitude:

P (z, t | m0) = P (t | m0)P (z | t,m0) ∝ fT e−kt(m−m0) × zαt exp

(
−
[

z

zmt(m)

]αt)
. (5.7)

where zmt(m) = z0t+ kmt(m−m0). The five parameters of this function: fT , m0, αt, zmt, and kmt can be

constrained either by using direct fitting routines, or by using Markov Chain Monte Carlo methods to sample

these parameters from a given representative spectroscopic set. These five parameters are dependent on the

template t and can be quantified independently. For additional details on the underlying Bayesian approach,

we refer the reader to the original paper by Beńıtez (2000).

5.3.2 Using Machine Learning to compute the prior

We developed a Random Näıve Bayes Classier (RNBC) prior which learns from a training sample and produces

individual prior for the galaxies (Carrasco Kind & Brunner, 2013b). A Näıve Bayes method is a supervised

learning algorithms based on applying Bayes’ theorem with the ”naive” assumption of independence between

every pair of features (Zhang, 2004). It assumes that every variable can provide information about classes

independently of the other variables, simplifying its framework but with high predictive power (Caruana

et al., 2008).

By using available training data and RNBC, we can use the set of magnitudes m from the training set as

our information vector I, in this case the prior defined in Equation 5.6 P (z, t | I) as :

P (z, t |m) =
P (z, t)P (m | z, t)

P (m)
(5.8)

where P (z, t) = P (z)P (t | z) which is computed from the training sample, if the template for the training

galaxies is not available they can be computed easily using the Likelihood defined before L(x | z, t), but for a

fixed z corresponding to the spectroscopic redshift. The normalization term P (m) is a constant which can be

taken as unity. The term P (m | z, t) can be written, using that m is n-dimensional, as:

P (m | z, t) = P (m1,m2, . . . ,mn | z, t)

= P (m1 | z, t)P (m2,m3, . . . ,mn | z, t,m1)

= P (m1 | z, t)P (m2 | z, t,m1)P (m3, . . . ,mn | z, t,m1,m2)

...

= P (m1 | z, t)P (m2 | z, t,m1) · · ·P (mn | z, t,m1,m2, . . .mn−1)

(5.9)
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Assuming ”naively” that magnitudes are independent (even though they are not) they contribute individ-

ually to every source information, i.e. P (mi | mj) = P (mi) for i 6= j we can write the above as:

P (m | z, t) = P (m1 | z, t)P (m2 | z, t)P (m3 | z, t) · · ·P (mn | z, t)

=

n∏
i=1

P (mi|z, t)
(5.10)

Therefore we can express the prior from Equation 5.8 as:

P (z, t|m) ∝ P (z)P (t|z)
n∏
i=1

P (mi|z, t) (5.11)

where the term P (mi|z, t) is modeling assuming a normal distribution with mean and variance computed

from the training set. Priors are built by aggregating the results of several hundred bootstrap samples. We use

a random subset of magnitudes in each bootstrap, similar to the construction of a random forest (Breiman,

2001; Carrasco Kind & Brunner, 2013a). As illustration on how the prior provides extra information to obtain

more accurate results, Figure 5.4 shows the probabilities obtained for one example galaxy taken from the

DP-1 sample. The top panel shows the likelihood obtained for three different galaxy types (Elliptical, Spiral

and Irregular). The middle panel shows the prior as defined in Equation 5.11 for the different galaxy types.

The bottom panel shows the comparison when using the prior or not for the same galaxy. In this case, if no

prior is used, a misclassification will occur without warning as the likelihood gives a smooth and well peaked

PDF at the wrong redshift for the wrong type (Spiral). By using the prior calibrated on a spectroscopic set we

can get more accurate results otherwise would have been unnoticed, just using the likelihood in this example

we had no reason to suspect we had a wrong galaxy type at the wrong redshift besides the fact that the PDF

it is wider than the usual galaxy but not rare enough to put a flag on it. In the next chapter we will discuss

how this extra information from a template fitting technique can get us closer to the limit of the information

that we can extract from the galaxy samples.

5.4 Summary

We introduced the basic Bayesian framework that describe the process of computing photo-z PDFs using

a template based approach. We showed with examples how the Likelihoods are computed and how this

information can be combined with prior information about the galaxy distribution to obtain better constrains

on the galaxy photo-z . The prior information can be obtained from a separate training set where the redshift

and the morphological types is known (which can be computed by fixing z and by obtaining the best fitting
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Figure 5.4: A demonstration of our the prior process by using a galaxy from the DP-1 data. (top) The
likelihood for a single galaxy to be one of the different templates. (middle) The computed prior for this
galaxy by using an RNBC on training data. (bottom) The final PDF computed with (solid line, orange area)
and without (dashed line, gray area) the use of prior information. The vertical line shows the true redshift
for this galaxy.
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among the spectral types). We discussed that this prior can take a functional form or can be estimated using a

Random Naive Bayes Classifier which has the advantage of computing prior for individual galaxies improving

the photo-z estimation.

In the next Chapter we will discuss how to efficiently combine the photo-z techniques described so far

in order to maximize the information available in the galaxy catalogs to push the accuracy of the estimated

photo-z PDF to its limit, given the quality of the spectroscopic and photometric sets.
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Chapter 6

Exhausting the Information: Bayesian
Combination of Photo-z PDFs

Outline
In this chapter, we present a novel and efficient Bayesian framework that combines the results from dif-

ferent photo-z techniques into a more powerful and robust estimate by maximizing the information from

the photometric data. To demonstrate this we use the supervised machine learning technique based on

random forest descriped in Chapter 3, an unsupervised method based on self-organizing maps described

in Chapter 4, and a standard template fitting method as shown in Chapter 5 but can be easily extend to

other existing techniques. By using different performance metrics, we demonstrate that we can improve the

accuracy of our final photo-z estimate over the best input technique.

6.1 Photo-z PDF Combination Methods

In the last three chapter we have described the different techniques we have developed and used in this

thesis that span most of the current techniques described in the literature. We now turn our attention to the

different methods with which we can combine distinct photo-z PDF estimation techniques (see e.g., Carrasco

Kind & Brunner, 2013b, where we first discussed combining Bayesian and machine learning predictions). In

the statistics and machine learning communities, this topic is known as ensemble learning (Rokach, 2010).

Recently, Dahlen et al. (2013) have demonstrated that, on average, an improved photo-z estimate can be

realized by combining the results from multiple template fitting methods. In this section, we build on

this previous work to identify how Bayesian techniques can be used to construct a combined photo-z PDF

estimator.

We can frame the problem mathematically by writing the set of photo-z PDFs for a given galaxy as a

set of models M, where each individual model Mk (e.g., TPZ, SOMz, or modified BPZ) provides a distinct

photo-z PDF or posterior probability. A photo-z PDF can be written as P (z | x,D,Mk), where x is the set of

magnitudes or colors (note that without loss of generality we can use other attributes in this process) used

to make the prediction and D corresponds to the training set which consists of Nd galaxies. We can also
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abbreviate this photo-z PDF as Pk(z). These photo-z PDFs are each subject to the following constraint:

∫ z2

z1

Pk(z)dz = 1 (6.1)

for every model Mk, where z1 and z2 are the lower and upper limits, respectively, for the redshift range

spanned by the galaxy sample. In the following subsections, we introduce different methods to aggregate

these photo-z PDFs and show the results of these different methods in §6.2.

Given the variety of photo-z PDF estimation methods we are using (i.e., supervised, unsupervised, and

model-based), we fully expect the relative performance of the individual techniques to vary across the

parameter space spanned by the data. For example, supervised methods should perform the best in areas

populated by high quality training data, while unsupervised or model-based methods should perform better

where we have little or no training data. As a result, we can bin a specific subspace of our multi-dimensional

parameter space and apply an individual combination method to each bin separately. This technique is

demonstrated later in more detail with the Bayesian Model Averaging method (although it is more generally

applicable).

6.1.1 Weighted Average

The simplest approach to combine different photo-z PDF techniques is to simply add the individual PDFs and

renormalize the sum. In this case the final photo-z PDF is given by:

P (z | x,M) =
∑
k

P (z | x,Mk). (6.2)

We can improve on this simple approach by including weights in the previous equation:

P (z | x,M) =
∑
k

ωkP (z | x,Mk). (6.3)

These weights, ωk, can be estimated for each input method by using the cross validation or OOB data, or

from an intrinsic characteristic of the photo-z PDF, such as zConf that we introduced in Chapter 3. In this

work we use three weight schemes in addition to the uniform case:

PDF shape weights

In this case, ωk is given by the the zConf parameter, which is similar to the odds parameter presented in

Beńıtez (2000) zConf is defined as the integrated probability between zphot± σk(1 + zphot), where zphot is a
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single estimated value for the photo-z PDF. This single photo-z estimate can be either the mean or the mode

of the photo-z PDF. Likewise, we can estimate σk for each input method either by using the OOB data, by

selecting a constant value across all input methods, or by selecting these values separately so that all photo-z

PDFs have the same cumulative zConf distributions. zConf quantifies the sharpness of the PDF and can take

values from zero to one. In Chapter 3 and Chapter 4, we demonstrated that there is a correlation between

this value and the accuracy of the overall photo-z. Specifically, we observed that, on average, galaxies with

higher zConf have more accurate photo-z PDFs than galaxies with lower zConf values.

Best fit weights

An alternative method to compute the values of ωk is to use the cross-validation data to first determine the

weight values that minimize the difference between zphot and zspec; and, second to apply these best fit values

to the test data. This method seeks the optimal linear combination of each individual PDF, thus it allows the

values of ωk to be negative. After the combination is completed, we renormalize according to Equation 6.1.

This method can be applied to a binned sub-sample to take advantages of the performance of each method

in different areas of the attribute space.

Oracle scheme

As mentioned, when the input, multi-dimensional data have been binned (c.f. Figure 6.7), we can use the

cross-validation data to select only one model from among all available input models to only be used with the

test data located within that specific bin. Since we are allowed to only select one input model, this will result

in an assigned weight value of one for the chosen model and zero otherwise, however the chosen model is

allowed to vary between bins.

The primary disadvantage of these simple, additive models is that incorrect estimates for the errors for

the selected input model can bias the final result. On the one hand, if a technique has underestimated errors,

the final result will be biased towards this one input method. On the other hand, overestimation of the

errors will bias the final result away from this particular method. One approach to address this issue, as

discussed by Dahlen et al. (2013), is to either smooth or sharpen the photo-z PDFs estimated by each method

by using the OOB data until their error distributions are approximately Gaussian with unit variance. We can

generalize this approach to transform a photo-z PDF as Pk(z) = Pk(z)αk , where we adjust the value of αk

by using either the cross validation data when errors are over estimated or use a Gaussian smoothing filter

when they are under estimated.
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6.1.2 Bayesian Model Averaging

Bayesian Model Averaging (BMA) is an ensemble technique that combines different models within a Bayesian

framework. BMA accounts for any uncertainty in the correctness of a given model by integrating over the

model space and weighting each model by the estimated probability of being the correct model. As a result,

BMA acts as a model selection procedure that handles the uncertainty in selecting the best model by using a

combination of models instead. This is because BMA considers the uncertainty in selecting the best model

while working under the assumption that only one model is actually the best (Monteith et al., 2011). BMA

has been used for astrophysical problems (see e.g., Gregory & Loredo, 1992; Trotta, 2007; Debosscher et al.,

2007) in, for example, the determination of cosmological parameters and variable star classification (see,

Parkinson & Liddle, 2013, for a review on using BMA in astronomy).

When using BMA, the training data are used to characterize each of the models that will be combined.

For each galaxy, the final PDF, P (z | x,D,M), is given by:

P (z | x,D,M) =
∑
k

P (z | x,Mk)P (Mk | D) (6.4)

P (Mk | D) is the probability of the model Mk given the training data D, which can be viewed as a simple,

model dependent weighting scheme. This probability can be computed by using Bayes’ Theorem:

P (Mk | D) =
P (Mk)

P (D)
P (D |Mk) ∝ P (Mk)

Nd∏
i=1

P (di |Mk) (6.5)

We have omitted the P (D) term as it is merely a normalization factor and we use the same data for all

models. di is the ith element from the training data D, which are assumed to be independent.

For each model, we assign the value εk as an average error for the estimation process. εk can be computed

as the fraction N (b)
k /Nd, where N (b)

k is the number of galaxies considered to be misestimated or bad for the

particular photo-z PDF method k. To quantify when a specific galaxy is a bad prediction we compute

N
(b)
k,i =

 1 if
∫ zs+δz
zs−δz P (z | x, di)dz ≤ πz,

0 otherwise.
(6.6)

In this equation, zs is the spectroscopic redshift for the ith training set galaxy. The first parameter, δz, controls

the width of a window centered on zs within which we accumulate photo-z probability for the ith training

galaxy around the true redshift. The second parameter, πz, is the minimum probability within this window

for which we consider the model prediction to be good. We find that πz = 0.5 and δz = 0.05 provides a good
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discriminant between good and bad photo-z model estimates.

Given the individual good/bad predictions for each training set galaxy, we can compute the total number

of bad predictions, N (b)
k , by summing over the individual predictions, N (b)

k,i , for the entire training data, D.

The total number of good prediction will naturally be Nd −N (b)
k . As a result, we can rewrite Equation 6.5:

P (Mk | D) ∝ P (Mk)(1− εk)Nd−N
(b)
k (εk)N

(b)
k , (6.7)

where P (Mk) is the probability of each model k, which we can assume to be unity for all models. Therefore,

the final PDF for each galaxy is given by

P (z | x,D,M) ∝
∑
k

P (z | x,Mk)P (Mk)× (1− εk)Nd−N
(b)
k (εk)N

(b)
k . (6.8)

We applied the BMA technique to individual bins within the multi-dimensional parameter space occupied

by a given data set. We demonstrate this binned BMA technique in Figure 6.7, where we use a Self Organized

Map to project our entire input parameter space to a two-dimensional map. In this manner, all magnitudes or

colors are used to form the binned regions within which the parameters of the ensemble learning approach

can vary. After computing photo-z PDFs for all galaxies with each method, we use BMA to determine the

relative weights for these input techniques within each bin; we can visualize these weights as different colors

across the two-dimensional map, as shown in Figure 6.7. This figure graphically displays how the accuracy

of each photo-z PDF estimation varies across the parameter space, and thus how the different weights

themselves vary.

6.1.3 Bayesian Model Combination

As discussed, Bayesian Model Averaging tries to select the best model among the ones introduced to the

algorithm. Alternatively, we can modify BMA to produce an more optimal model combination technique (Mon-

teith et al., 2011) known as Bayesian Model Combination (BMC). With BMC, instead of directly combining

the three different photo-z PDF estimates as was the case with BMA, the Bayesian process is used to explore

different combinations of the individual photo-z PDF techniques. Thus, an ensemble of different photo-z PDF

combinations are generated and we directly compare different model combinations.

As a simple example, we could first generate hundreds different random weights for all three of our photo-

z PDF estimation techniques, and second use these to compute hundreds of new sets of PDFs by computing

a simple weighted average by using Equation 6.3. Finally, we could apply BMA to this PDF ensemble to
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determine the final PDF. In this case, we could write Equation 6.4:

P (z | x,D,M,E) =
∑
e∈E

P (z | x,M, e)P (e | D), (6.9)

where e is an element from the set E of these hundreds combined models. Here we need to compute the

performance of each combination e and apply the BMA formulation, shown in Equations 6.5 and 6.6, to

those models by using the model e instead of Mk, i.e.,

P (e | D) ∝ P (e)

Nd∏
i=1

P (di | e). (6.10)

Fundamentally, with BMC we are marginalizing over the uncertainty in the correct model combination, where

in BMA we marginalized over the uncertainty in identifying the correct model from the entire ensemble.

The number of model combinations E is, in principle, infinite, and in practice can be very large. To

overcome this, we can use sampling techniques over a reasonable, finite number of models. Naively we

might use randomly generated weights, however, this approach can be costly to fully span the allowed

range of weights and convergence towards a satisfactory solution might be slow. Thus, instead of assigning

weights randomly or using incremental steps within a regular grid, we sample the weights from a Dirichlet

distribution where the concentration parameters are modified until they converge to stable values. We require

that the set of weights, wk, for each of the three models, Mk, satisfy
∑
wk = 1 and also wk > 0.

For a concentration parameter α of the same dimension as w, we have that the probability distribution

for w is given by:

P (w) ∼ Dir(α) =
Γ(
∑
k αk)∏

k Γ(αk)

∏
k

wαk−1
k , (6.11)

where Dir(α) is the Dirichlet distribution, Γ(αk) is the gamma function and k are the base models, which in

this thesis are TPZ, SOMz, and our modified BPZ. In order to generate a set E of combined models, we first

set αk to unity for all values of k. Second, we sample from this distribution ns times (ns is a fixed number,

generally between 2 and 5, which we fixed at 3) to get a set of ns weights and ns new model combinations.

Next, we compute P (e | D) by using Equations 6.5 and 6.6 for each model in the set of ns models. We,

temporarily, select the best model among the set ns, i.e, the one with highest P (e | D), and update the αk

parameters by simply adding the weights from the corresponding model to the current values of α,

α(t+1) = αt + max
we∈ns

P (e | D) (6.12)
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where t is just a symbolic reference to the fact that α is being updated every 3 steps.

We use the latest values for α to continue the sampling process to obtain the next set ns of model

combinations. As a result, we continually (by adding ns new models at each step) extend our set of model

combinations E. As the chain of models in this set is constructed iteratively, the process can be terminated

either when a predefined number of model combinations has been reached or when new model combinations

have started to converge. This process behaves similarly to a Markov Chain Monte Carlo process, and we

have an analogous phase to the burn in step, where we can omit some number of model combinations at the

start of our set E of model combinations. Thus, our final photo-z PDF prediction is the application of BMA

over the remaining elements in E, we have set for this work the size of E to be 800. Finally, we note that, as

was the case with BMA, we can develop a binned version of our BMC technique, where we develop different

model combinations for different region of the magnitude (color) space by using a SOM.

6.1.4 Hierarchical Bayes

A Hierarchical Bayesian (HB) method provides a different approach to combine the individual photo-z PDFs.

In a manner similar to BMA, we include the uncertainty that a given photo-z PDF for a specific galaxy might

be incorrectly predicted as a set of nuisance parameters over which we later marginalize.

Adopting our previous notation, we follow a similar approach to Fadely et al. (2012) and Dahlen et al.

(2013), and we write the photo-z PDF for an individual galaxy for each base method k:

P (z | x,D,Mk, θk) =
∑
j

P (z | x,D,Mk, θkj)× P (θkj | D,Mk), (6.13)

where we have introduced the hyperparameter θk, a nuisance parameter that characterizes our uncertainty

in the prior distribution of model k. The parameter θk can be quantified in different forms, but essentially

is the misclassification probability of the kth method. Thus, we quantify this mis-prediction probability with

P (θk); and we drop the dependence on x, the measured galaxy attributes, as it does not directly affect the

parameter θk. Since we will marginalize over θ, we keep the term D as we can use the training data to place

limits on θk by using the cross-validation data. We note that these probabilities are subject to:

∑
j

P (θkj | D,Mk) = 1. (6.14)

If we consider the case where galaxies are predicted correctly or are outliers, j is a binary state. In this

model, if we assume that γk is the fraction of galaxies that are mispredictions or are labeled as outliers
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for method k, we have: P (θk0 | D,Mk) = γk and P (θk1 | D,Mk) = (1 − γk). In this case, Equation 6.13

becomes:

P (z | x,D,Mk, θk) = Pdef (z |Mk, θk)γk + P (z | x,D,Mk, θk)(1− γk), (6.15)

where Pdef (z |Mk, θk) is the default PDF that should be used for the kth method when the original PDF

for that method has been determined to be mis-predicted or wrong. In the second term, we use the original

PDF for the method k, which is multiplied by the fraction of well predicted objects 1− γk.

The final PDF after we combine the different photo-z PDFs from our base methods in the HB approach is

given by:

P (z | x,D, θ) =
∏
k

P (z | x,D,Mk, θk)1/β . (6.16)

Here, following Dahlen et al. (2013), we have introduced an extra parameter β, which is a constant value

that quantifies the degree of covariance between the different base methods. β = 1 corresponds to complete

independence between the base methods, while β = 3 (or, more generally, the total number of methods)

would correspond to full covariance between them. We can compute β from the OOB sample in such way

the final error distribution follows a normal distribution with zero mean and unit variance, as we have done

in this chapter. Alternatively, we can marginalize over all possibles values of β when no cross validation data

is available and we can integrate over the uncertainty of this parameter.

Finally, by marginalizing over θ we have our final PDF: P (z | x,D), or simply P (z) given by:

P (z) =

∫ 1

0

P (z | x,D, θ)P (θ)dθ, (6.17)

where P (θ) is a constant which in the simple case is equal to unity. If OOB data is available, we can narrow

down the range of allowed values for θ (or effectively γk), so we can set up a limited range for γk based on

the performance of each method k on this data. In this case, P (θ) will act as a top-hat window function. In

any case, the final P (z) is subject to Equation 6.1. As discussed before, we can either apply the HB approach

to the entire data set, or we can partition the input space and apply the HB approach independently to the

binned regions of the parameter space.

6.2 Results/Discussion

We now turn to the actual application of the ensemble learning approaches described in §6.1 to the data

introduced in §2.3. We present the seven combination methodologies we use in this section in Table 6.1,

which also includes an abbreviated name that we will use to refer to a specific technique. We follow a

91



Table 6.1: The photo-z PDF combination methods, their weights and abbreviations presented in this chapter.

Method Weightsa Abbreviation
Weighted Average Uniform WAflat

Weighted Average zConf WAshape

Weighted Average best fit WAfit

Weighted Average oracle predictor WAoracle

Bayesian Model Averaging BMA
Bayesian Model Combination BMC
Hierarchical Bayes HB

aif applicable

similar approach to Chapter 4 in order to compare different combination methods, and define the bias to be

∆z′ = |zphot− zspec|/(1 + zspec). We also present the standard metrics we use to compare the performance of

the different combination techniques in Table 6.2. As shown in this table, we define five metrics to address

the bias and the variance of the results (the first five rows) and we present three values to characterize the

outlier fraction.

We also use the KS metric, which represents the results of a Kolmogorov–Smirnov test that quantifies

the likelihood that the predicted photo-z distribution and the spectroscopic redshift distribution N(z) are

drawn from the same underlying population. This metric provides a single, robust value to compare both

distributions that does not depend on how the results are binned by redshift, and it is defined as the maximum

distance between both empirical distributions.

To determine this statistic, we compute the empirical cumulative distribution function (ECDF) for both

distributions. For the spectroscopic sample, the ECDF is defined as:

Fspec(z) =

N∑
i=1

Ωzispec<z
(6.18)

where N is the number of galaxies in the redshift sample, and

Ωzispec<z
=


1, if zspec,i < z

0, otherwise
(6.19)

The ECDF for the photo-z distribution is simply the accumulation of the probability presented in the photo-z

PDF. The summation is carried out over all galaxies in the sample. Given the ECDF for both the photo-z and

spectroscopic distributions, we compute the KS statistic as:

KS = max
z

(||Fphot(z)− Fspec(z)||) (6.20)
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Table 6.2: The definition of the metrics used to compare different photo-z combination methods.

Metric Meaning
< ∆z′ > mean of ∆z′

|∆z′|50 median of ∆z′

σ∆z′ Standard deviation of ∆z′

σ68 Sigma value at which 68% of ∆z′ is enclosed
σMAD Median absolute deviation = median(||∆z′ − |∆z′|50||)
KS Kolmogorov - Smirnov statistic for N(z)
out0.1 Fraction of outliers where ∆z′ > 0.1
out2σ Fraction of outliers where |∆z′− < ∆z′ > | > 2σ∆z′

out3σ Fraction of outliers where |∆z′− < ∆z′ > | > 3σ∆z′

I∆z′ I-score, a weighted combination of all other metrics.

Thus, as the KS statistic decreases, the two distributions become more similar.

All of the metrics listed in Table 6.2 are positive and characterized by the fact that lower metric values

indicate a more accurate photo-z PDF. In Chapter 4 we defined a new, meta-statistic called I-score (sym-

bolically represented by I∆z′) that provides a single statistic to simplify the comparison of different photo-z

techniques. To compute this metric, we first normalize each set of metrics across all different photo-z estima-

tion techniques so that we are not biased by different dynamic ranges. Thus, for example, we first compute

the mean and standard deviation for < ∆z′ > for each combination technique, and subsequently rescale all

individual < ∆z′ > values so that this set of values has zero mean and unit variance.

We continue this process for all nine statistics listed in Table 6.2, and compute their weighted sum to

obtain the total I-score:

I∆z′ =
∑

wiMi, (6.21)

where Mi is the rescaled metric and weight value for metric i out of the nine available. For simplicity, we use

equal weights in the remainder of this chapter (and thus the I-score is simply the average of the nine rescaled

metrics for each technique). As a result, the photo-z method (or parameter configuration) with the lowest

I-score will be the optimal estimation technique. On the other hand, if we were looking for the technique

or the specific parameter configuration with, for instance, the lower outlier fraction, we could assign higher

weights accordingly to select the best technique. In this way, we can efficiently select the best method or

configuration for specific research requirement.

6.2.1 Cross validation data

In Chapter 3, we introduced OOB data and demonstrated its use as a cross-validation data set that provided

error quantification and overall performance similar to what could be expected when applying an algorithm
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directly to the test data set. When building a tree with TPZ or a map with SOMz, a fraction of the overall

training data, usually one-third, is extracted and not used during the tree/map construction process. The

resultant tree/map is subsequently applied to this unused data to make a photo-z prediction, and this process

is repeated for every tree/map. These photo-z predications are aggregated for each galaxy to make a photo-z

PDF; and by construction a galaxy can never be used to train any tree/map that is subsequently used to

predict that galaxy’s photo-z. Thus, as long as the OOB data remains similar to the final testing data, the OOB

data provide results that will be similar to the final test data results and can be used to guide expectations

when applied blindly to other data.

As an illustration of this process, Figure 6.1 compares the photometric (as computed by using SOMz) and

spectroscopic redshifts for galaxies in the training (5,000 in total) and testing (5,210) samples as selected

from field 1 of the DEEP2 data set, DP-2 set described in Chapter 2. As shown in this Figure, the performance

on both the OOB and the testing data are visually similar and there is no indication of overfitting. In addition,

general features in the result, like the spread of the data or the slight tilt of the distribution of points relative

to the diagonal, are observed in both samples.

A similar conclusion is observed with the SDSS data, as shown in Figure 6.2 where the photometric (as

computed by using TPZ) and spectroscopic redshifts for 50,000 galaxies from the training set are compared

to 50,000 randomly selected galaxies from the test set from the sample SL-2 from §2.1. Both distributions

show similar behavior and global trends, thus we conclude that, as expected, the OOB data can be used to

predict the performance of an PDF combination algorithm on real data.

Another method to contrast the results from these data is to compute the correlation between each of the

three photo-z estimation techniques discussed earlier as a function of redshift. For this, we use the photo-z

PDFs for all galaxies, and we calculate the Pearson correlation coefficient Rik within each redshift bin. Even

if the three input methods are completely independent, we should expect a positive correlation between

them if their predictions are similar. In fact, we desire a positive correlation (but not necessarily a perfect

correlation) between the techniques as this will indicate the different techniques are all performing well.

We present the Pearson correlation coefficient for the three photo-z PDF estimation techniques for the

DEEP2 data (top panel) and the SDSS data (bottom panel) in Figure 6.3. In this figure we display these

correlation coefficient computed from the cross-validation (OOB) data (dashed line) and the test data (solid

line). The global agreement between these lines further demonstrates the importance of the OOB data

as a predictor of the performance of a given technique. This figure also demonstrates a tighter correlation

between the two machine learning algorithms than between any machine learning algorithm and the template

technique, which is not surprising given the similarities in the methods. While not shown, the shape of the
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Figure 6.1: A comparison of the photometric (computed by using SOMz) and spectroscopic redshifts for
training set (left) and test set (right) galaxies from field 1 of the DEEP2 survey (DP-2 set).

Figure 6.2: A comparison of the photometric (computed by using TPZ) and the spectroscopic redshift from
the SDSS-DR10 for the 50,000 training set galaxies (left) and 50,000 galaxies randomly subsampled from
the 1,097,397 galaxies in the test set (right). Data corresponding to the SL-2 data set from Chapter 2
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Figure 6.3: The Pearson correlation coefficient between the individual photo-z PDF estimation methods as
a function of redshift for the DEEP2 (top) and SDSS (bottom) data. The coefficients measured from the
cross-validation (OOB) data (dashed line) and from the test data (solid line) are nearly identical, indicating
the utility of the OOB data in predicting the performance of an algorithm on blind test data. Note that
a positive correlation is beneficial since this measures the relative performance of different techniques in
predicting redshifts.

covariance matrices resemble the spectroscopic N(z) distributions presented in 6-combo/Figures 6.9 and

6.13. We conclude that this is expected since a larger number of galaxies can naturally produce a greater

chance for divergent photo-z estimates.

As mentioned previously, a concern when combining photo-z PDFs from different methods is to reduce the

likelihood of being biased by methods that might under- or overestimate their errors. To further demonstrate

the importance of the cross-validation data, we compare the normalized error distribution between the

cross-validation (OOB) and test data in Figure 6.4 for both DEEP2 (top panel) and SDSS (bottom panel) data,

where the photo-z PDFs were generated by TPZ . In both cases, the two curves are nearly identical, and we

confirmed the same result with both SOMz and BPZ. Thus we can use the OOB data error estimate to rescale

the PDF for the test data by using the results computed from the OOB data.

6.2.2 Photo-z PDF Combination for DEEP2

To combine the three photo-z PDF techniques discussed in previous chapters, we employ a binning strategy

to allow different method combinations to be used in different parts of parameter space. We first create

a two dimensional, 10 × 10 SOM representation of the full 14-dimensional space (eight magnitudes and

six colors, note that we do not compute a color between the two different photometric input surveys) by

using a rectangular topology to facilitate visualization. With this map we can perform an analysis of all

galaxies that lie within the same cell, in a similar process to that described in Chapter 4, but now instead

of predicting a photo-z, we are computing the optimal model combination. We apply all seven combination

methods presented in Table 6.1 to all galaxies within each cell by using the OOB data that are also contained

within the same cell. We note that the WAflat and WAshape methods do not depend on this binning, and can,
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Figure 6.4: The normalized error distributions for galaxies in DEEP2 (top) and SDSS (bottom). The error
distribution computed from the test data is shown in red, while the error distribution for the cross-validation
(OOB data) is shown in black. The excellent agreement highlights the importance of the OOB data in
predicting the results of blind test data predictions.

therefore, be used without OOB data. We also could employ the HB approach without using this map, but in

this case we would need to define Pdef (z |Mk, θk) and perform the marginalization over the entire range of

θk without any prior on this value.

We present a summary of the results obtained by applying the seven different combination techniques to

all the galaxies within the DEEP2 data in Table 6.3. The bold entries in this Table highlight the best technique

for any particular metric. The first three rows in this Table show the individual photo-z PDF estimation

techniques, of which TPZ generally performs the best and is thus shown in the first row as the benchmark.

This Table also clearly indicates that the seven different combination techniques generally have a similar

performance, and, as shown in the last four rows, often perform better than TPZ.

We observe that the last four methods: WAfit, BMA, BMC, and HB all use the binned model combination

approach, and thus can take advantage of the different performance characteristics of individual codes. In

this case, BMC provides the best performance as measured by the I-score I∆z′ , the bias < ∆z′ >, the scatter

σ∆z′ , and the outlier fraction out0.1. Overall, the differences are close to 5% for many of the metrics, which,

while small, are still significant since these are averaged metrics over the full test galaxy sample.

In Figure 6.5, we present a visual comparison between the ten different photo-z estimation techniques

for five different metrics: bias, scatter, outlier fraction, KS test, and the I-score. In each panel, the horizontal
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Figure 6.5: A comparison of the average performance for the three individual photo-z PDF estimation
methods and the seven different photo-z PDF combination approaches for five different metrics as defined in
Table 6.2 for the DEEP2 data. The horizontal dashed line indicates the best result for a given statistic among
the three individual methods (note, BPZ is not always shown at the provided scale), and the shaded area
separates the individual methods from the combined approaches. All values are presented in Table 6.3.
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Figure 6.6: An comparison between the three individual photo-z PDF estimation techniques and a combined
PDF computed by using BMC and Equation 6.8 for a single example galaxy taken from the DEEP2. The
vertical line indicates the true source redshift.

dashed line shows the best value from the individual photo-z PDF estimation methods and the shaded area

separates the individual from the combined methods. This Figure demonstrates that the Bayesian modeling

techniques provide better performance than the best individual method over all five metrics, and also that by

employing the binning scheme to optimize the combination approach we achieve better performance than

for the best individual technique.

We compare the actual photo-z PDF for a single galaxy selected from the DEEP2 survey as estimated by

the three individual techniques with the photo-z PDF estimated by the BMC method in Figure 6.6. This

Figure clearly shows how the re-normalized combined PDF from the three individual photo-z PDF estimation

techniques has been improved as the BMC result is closer to the true galaxy redshift, shown by the vertical

line. These combination techniques identify which individual method works best in different cells, and can

use that information to either weight the individual photo-z PDFs accordingly, or in the case of BMC to

marginalize over the uncertainty in the correct weights to produce the best combination.

We apply a SOM to the DEEP2 field 1 data in order to construct a two-dimensional, binned combination

of the three individual photo-z PDF estimation methods. We use this SOM to determine the weights for the

three individual methods for each cell, and present the results in Figure 6.7 when using the BMA approach

as it is easy to interpret. We also show the mean DEEP2 R-band magnitude for all galaxies in a given cell

in the lower right panel, which clearly indicates the ability of the SOM to preserve relationships between

galaxies when projecting from the higher dimensional space to the two-dimensional map. Of course, the
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Figure 6.7: A two-dimensional SOM showing the relative weights for the BMA combination scheme applied
to the three individual methods for the DEEP2 field 1 data (TPZ is top left, BPZ is top right, and SOMz is
bottom left). In each panel, the color map indicates the value of the weight relative to the other cells in the
map. The bottom right panel shows the same cells colored by the mean R-band magnitude for the cross
validation galaxies.
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SOM mapping is a non-linear representation of all magnitudes and colors, thus the DEEP2 R-band map

should only be used to provide guidance.

In the three weight maps, a redder color indicates a higher weight, or equivalently that the corresponding

method performs better in that region. These weight maps demonstrate the variation in the performance

of the individual techniques across the two-dimensional parameter space defined by the SOM. For example,

BPZ performs the best, as expected, in the upper left corner of the map, which is approximately where

the faintest galaxies, at least in the DEEP2 R-band, are stored. On the other hand, TPZ performs better in

the lower sections of the map, which approximates to brighter DEEP2 R-band magnitudes. Interestingly,

SOMz performs relatively better in the upper middle of the map, which corresponds to the middle range

21 . R . 23. The overall variation in weights across the map reflects the performance differences between

the individual methods, which are exploited by the combination algorithms in order to identify the optimal

combined performance.

We can also compare the global performance of the BMC method with the three individual photo-z PDF

methods as a function of the spectroscopic redshift as shown in Figure 6.8. In this Figure, the photometric

redshifts are the computed as the mean of each PDF, and the median is shown as black points along with the

tenth and ninetieth percentiles as vertical error bars, enclosing 80% of the distribution on each redshift bin.

The performance of the BMC method is generally more accurate, resulting in a tighter distribution that suffers

fewer outliers when compared to the benchmark TPZ method. Interestingly, the SOMz performance is similar

to TPZ, while BPZ is worse, with wider spread and several discontinuities. Nevertheless, the combined method

still uses BPZ, as shown in the weight maps, as appropriate to generate an overall improved performance,

especially for the faintest galaxies as discussed previously. We note, however, that the number counts in the

last few bins are very low for the DEEP2 training and testing sets as shown in Figure 6.9. Therefore, although

on average BPZ has better performance statistics over those bins (with large error bars), the photo-z results

remain subject to Poissonian fluctuations (which is important when constructing a SOM to subdivide the

galaxies when applying the combination models), thus the BMC results do not emphasize the BPZ results in

the highest redshift bins.

Of all of the ten different metrics presented in Table 6.3, only the KS test does not show a marked

improvement over the benchmark TPZ method. This metric does not depend on the redshift binning and it is

computed by using the stacked PDF for each method. As a result, this metric is expected to be less sensitive to

a combination approach, since stacking the PDF smooths out little discrepancies between the models. After

integrating over a large number of galaxies PDFs, the individual methods will not differ significantly from

one another and the final N(z) distribution will resemble the one from the benchmark method.
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Figure 6.8: A comparison of the photometric and the spectroscopic redshifts for all DEEP2 field1 galaxies.
From left to right, the comparison is for the TPZ, SOMz, BPZ, and the BMC techniques.The black dots are the
median values of zphot and the errors bars correspond to the tenth and ninetieth percentiles within a given
spectroscopic redshift bin of width ∆z = 0.1

Figure 6.9 shows the final N(z) produced by stacking the PDFs from the BMC technique for galaxies from

the DEEP2 (in solid black) and the corresponding DEEP2 spectroscopic N(z) for the same galaxies (in gray).

As also seen in Chapter 3 and Chapter 4 for TPZ and SOMz respectively, both distributions match exceedingly

well.

6.2.3 Photo-z PDF Combination for the SDSS

We now change our focus to the analysis of the SDSS galaxy sample, which consists of 1,097,397 galaxies

taken from the SDSS-DR10 data; we now retain 50,000 galaxies for training purposes. We apply the same

three photo-z PDF estimation methods and seven different combination methods. We construct a SOM-

defined, 10 × 10 two-dimensional map to subdivide the multi-dimensional magnitude and color space by

using a rectangular topology to facilitate visualization. As before, we use cross-validation data to identify

the best set of model parameters within each individual cell in our two-dimensional map. As shown in

6-combo/Figures 6.3 and 6.4, the photo-z PDFs computed by using the cross-validation and testing data sets

are comparable and unbiased.

We present in Table 6.4 the same ten metrics for each method, and in bold we highlight the best method

for each metric. Overall, the results obtained for this data set are remarkable, especially for the outlier

fraction and the dispersion. We once again treat TPZ as the benchmark method; but note that, interestingly

enough, in two cases, including the KS metric, TPZ does provide the best result. In addition, both BMA and

BMC have very similar results, with the latter being slightly better.

After these two models, WAshape, which is OOB data independent, shows good performance, especially

when looking at the I∆z′ score. For any given individual metric, however, it does not perform better than

other combination methods. For this data, BPZ provides good results; thus we expect that the set of template
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Figure 6.9: Top panel: The N(z) for the DEEP2 sample computed directly from the spectroscopic redshifts
(gray) and by stacking the photo-z PDF estimates from the BMC method (black). Bottom Panel: The
absolute difference between these two N(z) distributions.

described in §5 are a good representation of the galaxies in the SDSS photometric data. In particular, this

seems true of the LRGs that dominate this sample for z & 0.3.

We present the performance of the three individual and seven combination methods when applied to the

SDSS data for five of the most common metrics in Figure 6.10. As was the case with the DEEP2 data, the

Bayesian combination methods provide good performance. We also see the same variation in the KS metric,

especially when comparing the combination methods to TPZ. However, TPZ is not always the best performer

among the individual techniques, for example SOMz displays the best performance as measured by σ∆z′ and

out0.1.

As we discussed in Chapter 4, SOMz performs quite well when using a spherical topology; in the current

application to the SDSS data, we have used a random atlas containing 300 maps that use spherical topology

each with 3072 total cells. Interestingly, the WAoracle method, which selects the best method within each

binned cell, often selects the SOMz result as we can infer from Figure 6.10. Although in general the oracle

combination method is not the best possible combination, as shown by the overall performance of the BMA

and BMC combination methods on this data.

We also display the SOM-defined, 10 × 10 two-dimensional map used to determine the weights for the

three individual methods for each cell in Figure 6.11. In this map, we identify galaxies within the OOB

and test data to determine the parameters for the combination models. One of the benefits of using an

unsupervised learning method for this mapping is that we can use any property from the galaxies within this
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Figure 6.10: A comparison of the average performance for the three individual photo-z PDF estimation
methods and the seven different photo-z PDF combination approaches for five different metrics as defined in
Table 6.2 for the SDSS data. The horizontal dashed line indicates the best result for a given statistic among
the three individual methods, and the shaded area separates the individual methods from the combined
approaches. All values are presented in Table 6.4.
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map to construct a representation, such as the mean SDSS r-band magnitude map shown in the bottom right

panel of Figure 6.11. In this panel the brighter galaxies are generally on the right while the fainter galaxies

are on the left, even though all five magnitudes and four colors were used to construct the SOM-defined,

two-dimensional map.

The weighting for the three individual methods show interesting patterns, and TPZ and SOMz seem

complimentary in that TPZ is weighted most strongly at fainter r-band magnitudes (the left side of the map)

while SOMz is weighted most strongly at brighter r-band magnitudes (the right side of the map). This result

is most likely an artifact from the bi-modality of the training data, which is dominated at low redshift by the

SDSS main galaxy sample and at high redshifts by the SDSS-III LRG sample. At brighter magnitudes and

lower redshifts, the SOMz approach where a high-dimensional space is projected to two-dimensions does a

better job of maintaining complex relationships within the data. At fainter magnitudes and higher redshifts,

however, the data are dominated by the homogeneous LRG sample. The TPZ approach performs better for

this sample, since the high-dimensional space is recursively sub-divided by TPZ to maximize the information

gain, which may only require one or two dimensions.

Another interesting observation from these weight maps is that BPZ performs well over much of the

parameter space, with a particular strong weighting in a narrow vertical band on the extreme left of the

map and again in the center of the map. Given the nature of the input galaxy sample, it seems reasonable

to expect that these areas of the map are dominated by Elliptical galaxies. Another interesting observation

is that there are six cells in the second column from the left that all have the same value in each weight

map (pink for TPZ, white for BPZ, and light blue for SOMz). These cells are primarily empty, i.e., they contain

weights and training data but they lack test galaxies and thus have a constant value, which illustrates how

strongly the galaxies (i.e., MGS or LRG) are concentrated in this SOM-defined, two-dimensional topology.

The number of galaxies, either for training or testing, within each cell can vary significantly, which

is simply due to the fact that we used a fixed number of cells (in this case 100) to represent the higher

dimensional space when fewer cells would have been sufficient. However, the empty cells do not affect the

performance of the photo-z combination methods, they are simply not used during the analysis. It is the fact

that these individual methods perform differently across these cells that makes the combination approach a

powerful technique to maximally extract information from the available data.

We next provide a comparison between the photo-z PDFs computed by the three individual techniques

and the BMC technique and the SDSS spectroscopic redshift for all 1,097,397 galaxies in Figure 6.12. The

first observation from the figure is the bi-modality of the sample, which is the result of the two primary

sub-populations (i.e., MGS and LRGs). Overall, the results are quite good with a very tight correlation,
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Figure 6.11: A two-dimensional SOM showing the relative weights for the BMA combination scheme applied
to the three individual methods for the SDSS data (TPZ is top left, BPZ is top right, and SOMz is bottom left).
In each panel, the color map indicates the value of the weight relative to the other cells in the map. The
bottom right panel shows the same cells colored by the mean SDSS r-band magnitude for the cross validation
galaxies.
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Figure 6.12: A comparison of the photometric and the spectroscopic redshifts for all SDSS galaxies. From
left to right, the comparison is for the TPZ, SOMz, BPZ, and the BMC techniques.The black dots are the
median values of zphot and the errors bars correspond to the tenth and ninetieth percentiles within a given
spectroscopic redshift bin of width ∆z = 0.05

especially in areas of high source density areas. The main exception is at the highest redshifts where there is

a slight underestimation; and, as seen before, we can observe how these different approaches provide similar

results, which are therefore correlated, while still differing in other areas where one method may outperform

the others. The most right panel is the BMC which shows a slightly tighter distribution in comparison to the

others.

Finally, in Figure 6.13 we present the galaxy redshift distribution for both the spectroscopic sample (in

gray) and the photometric redshift distribution, computed by stacking the individual galaxy PDFs (in black).

This Figure highlights that the underestimation of the photo-z at high redshifts in Figure 6.12 coincides with

the strong decline in the number of galaxies after z = 0.75. More importantly, however, this N(z) figure

shows the excellent agreement between the photometric and spectroscopic galaxy redshift distributions.

Given the fact that the SDSS galaxy sample contains two distinct populations, this agreement is remarkable.

6.3 Summary

We have presented and analyzed different techniques for combining photo-z PDF estimations on galaxy

samples from the DP-1 and SL-2 sets. In particular, we use three independent photo-z PDF estimation

methods: TPZ, a supervised machine learning technique based on prediction trees and a random forest; SOMz,

an unsupervised machine learning approach based on self organizing maps and a random atlas; and BPZ, a

standard template-fitting method that we have slightly modified to parallelize the implementation.

We developed seven different combination methods that employ ensemble learning with cross-validation

data to maximize the information extracted. Of these seven methods, four employ a weighted average where

the weights can either be selected to be uniform across the input methods, to be determined from the shape
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Figure 6.13: Top panel: The N(z) computed directly from the spectroscopic redshifts (gray) and by stacking
the photo-z PDF estimates from the BMC method (black). Bottom Panel: The absolute difference between
these two N(z) distributions.

of the photo-z PDF (e.g., by using the zConf parameter), to be determined by an oracle estimator where one

(ideally the best) method is preferentially selected, and where the weights are obtained by a fitting procedure

applied to the OOB data. Three of the combination methods were Bayesian techniques: Bayesian Model

Averaging (BMA), Bayesian Model Combination (BMC), and Hierarchical Bayes (HB).

We expect the individual photo-z PDF estimation techniques to perform differently across the parameter

space spanned by our galaxy samples; for example, template-fitting techniques are expected to work better

at higher redshifts than machine learning methods, which perform optimally when provided high-quality,

representative training data. Thus we construct a two-dimensional, 10 × 10 self-organizing map (SOM) to

subdivide the high-dimensional parameter space occupied by the galaxy samples. We apply different photo-z

PDF estimation techniques within each cell in this map, since each cell should contain galaxies with similar

properties. A visual inspection of these maps indicates that the two machine learning methods: TPZ and SOMz

are generally complementary, and that in combination with a model based technique such as BPZ we are able

to maximize the coverage of this multidimensional space efficiently.

We also verified that by using the OOB data, as introduced in Chapter 3, we can an obtain an accurate,

unbiased and honest estimation of the performance of a photo-z PDF estimation technique on the test data.

We also computed the correlation coefficient and the error distribution and showed they also behave similarly

for the cross-validation (i.e., the OOB data) and the test data. These computations are extremely important

when combining photo-z PDF techniques as we can learn from the OOB data the optimal parameters needed
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for a specific ensemble learning approach, and thereby maximize the performance of that combination

technique when applied to blind test data.

Overall, we found that the BMA and BMC are the best photo-z PDF combination techniques as they have

better performance metrics when compared to the individual photo-z PDF estimation techniques, especially

when unbiased cross-validation data is available. This result is true for both datasets . When OOB data is

not available, we can instead use the zConf parameter as a weight for each method after first renormalizing

the individual photo-z PDFs. We can also use the Hierarchical Bayes method to combine these predictions,

which we demonstrated can also lead to better results.

The computational cost to apply these Bayesian models to galaxy samples will depend directly on the

size of the data set, the number of photo-z estimation techniques used, and the resolution of the given

photo-z PDFs. In Chapter 8 we demonstrate how a sparse basis representation can reduce the storage

significantly and that manipulation of these PDFs can be improved within the bases framework thereby

reducing computational costs.

Finally, we have demonstrated that even when a photo-z PDF technique is very accurate, we can still

make improvements by extracting additional information about the distribution of galaxies in the higher

dimensional parameter space and the individual performance of the photo-z PDF algorithms. There are

currently a large number of published algorithms to compute photo-z ’s, many of which also compute

photo-z PDFs. Even if their performance is similar, these techniques will all have their own advantages and

disadvantages. Thus we believe the combination of different techniques is the future of photo-z research,

and we expect additional research to be forthcoming in this area.

In the next chapter we show how we can extend our analysis on combinig techniques to make improve-

ments not only on the photo-z computation but also on the identification of outliers in the data set.
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Chapter 7

Photo-z Outliers

Outline
In this chapter we discuss better techniques to identify outliers for the photo-z computation and how combin-

ing multiple techniques can improve not only the accuracy of the photo-z solution but also the identification

of outliers in the data. Removing outliers from the galaxy sample is an extremely important task when

putting constrains on the cosmological parameters, therefore a proper identification of those is fundamental

for today’s cosmology.

7.1 Outliers identification

As we have discussed previously, aggregating information from multiple photo-z PDFs estimation techniques

can improve the overall photo-z solution. In this section, however, we explore how this information can be

combined to improve the identification of outliers within the test data. In particular, we attempt to use all

possible information in order to identify these objects, from the shape of each photo-z PDF as computed by

all individual methods to the differences in their predicted photo-z. We adopt a Näıve Bayes Classifier (NBC)

(Zhang, 2004) to identify these two groups, a technique that has found widespread adoption to identify

spam email messages. The advantage of this approach is that it is easy to implement, is fast and efficient for

large dimensional data, and can be very competitive with other classifiers (Domingos & Pazzani, 1997; Frank

et al., 2000). We have previously introduced this methodology in Chapter 5 to compute priors in a Bayesian

inference for photo-z , in this case we take a slightly different approach as we will use it in this classification

problem.

Let θ be the set of Nθ parameters, θi, we will use to identify the outliers. By using the Bayes Theorem,

we can compute the probability for an object to be an outlier, given θ as:

P (out | θ) =
P (out)P (θ | out)

P (θ)
(7.1)
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where the evidence, P (θ) is given by

P (θ) = P (θ | out) + P (θ | in) (7.2)

and out refers to outliers and in refers to inliers, the only two classes we identify in this analysis. The Näıve

Bayes Classifier assumes that all θi variables are independent, even if their independence is weak or even

if there is a strong dependence between any of them. Each variable provides information about these two

classes, and this information can be combined to make a stronger classifier (Zhang, 2004). For instance, in

Chapter 3 we showed that outliers tend to have a broader (larger values of zConf) and multi-peaked PDFs,

and herein we treat these values as independent data even though multi-peaked PDFs are indeed generally

broader.

By using this assumption, similarly to what we did in Chapter 5, we have:

P (θ | out) = P (θ1, θ2, . . . , θNθ | out) =

Nθ∏
i=1

P (θi | out) (7.3)

and similarly,

P (θ | in) =

Nθ∏
i=1

P (θi | in) (7.4)

We can now rewrite Equation 7.1:

P (out | θ) =
P (out)

∏
P (θi | out)∏

P (θi | out) +
∏
P (θi | in)

, (7.5)

which is similar to the method used by Gorecki et al. (2014), who demonstrated the potential of this approach

to identify photo-z outliers. Here, however, we use a different set of variables that are generated for all three

individual photo-z PDF methods.

In our case we use Npeak, the number of peaks in each photo-z PDF; rpeak, the logarithm of the ratio

between the height of the first peak and the height of the second peak; zmean, the mean of each photo-z

PDF; zmode, the mode of each PDF;zConf , measured with respect to the mean and the mode of the photo-z

PDF; and the difference in the photo-z , as enumerated by the mean and the mode between each of the three

methods. Thus, we have six metrics computed individually for each of our three photo-z PDF estimation

techniques, and an additional six metrics for the difference in photo-z mean and mode between the three

techniques. As a result, we have a total of twenty-four metrics, to which we can add the input data for each

survey.
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Figure 7.1: The normalized distributions of four of the set of thirty-eight (rescaled) θ variables from the
DEEP2 data that are used for outlier detection. The variables are binned as outliers (black line histograms)
or inliers (gray histogram). From the top left and following in a clockwise direction: Npeak, the number of
peaks in the TPZ PDF; zConf , as computed from TPZ, the R-band magnitude, and the difference between
the photo-z computed by using the mean of the TPZ and BPZ PDFs.

We, therefore, have a total of thirty-eight variables for the DEEP2 survey, while for the SDSS we have

a total of thirty-three variables to use for outlier detection. For convenience, we rescale each of these

variables to lie between zero and one. P (θi | in) and P (θi | out) are evaluated by using the OOB or cross-

validation data, which we have shown can reliably predict the results on the test data. Once computed, these

distributions are evaluated for the test data, where P (out | θ) is evaluated separately for each galaxy in the

test data.

Figure 7.1 presents the normalized distributions of four rescaled variables (i.e., θi) taken from the

DEEP2 test data. Note that the inlier and outlier distributions are normalized to have unit area, thus these

distributions illustrate how these two populations differ and not how the relative numbers between the inlier

and outlier populations vary. The four variables shown in this Figure include the number of peaks in the

TPZ PDFs, zConf computed by TPZ, the R-band magnitude, and the difference between the mean of the TPZ

and BPZ photo-z PDFs. In just these four distributions, there is clear separation between the galaxies labeled

as outliers (black line) and inliers (gray shaded area), where the outlier identification metrics are defined

by using Table 4.1. In particular, for this Figure we use out0.1, i.e., galaxies for which ∆z′ > 0.1. While not

shown, a similar result is seen for the other distributions. The result that outliers and inliers follow distinct

distributions is what makes this a powerful approach. In effect, all information is assumed to be independent,
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Figure 7.2: The normalized distributions of four of the set of thirty-three (rescaled) θ variables from the
SDSS data that are used for outlier detection. The variables are binned as outliers (black line histograms) or
inliers (gray histogram). From the top left and following in a clockwise direction: rpeak, the logarithmic ratio
of the first two peaks in the TPZ PDF; zConf , as computed from SOMz, the SDSS z-band magnitude, and the
difference between the photo-z computed by using the mode of the SOMz and BPZ PDFs.

and when combined allows an efficient identification of catastrophic outliers.

We see a similar trend in Figure 7.2, but now for galaxies in the SDSS test data. In this Figure, we have

selected four different rescaled variables; namely, the logarithmic ratio between the first and the second

peaks of the TPZ PDF (note that if the PDF has one peak, we fix this value to be four), the zConf computed

from SOMz, the SDSS z-band magnitude, and the difference between the mode of the SOMz and BPZ photo-z

PDFs. Once again, this Figure highlights that in each of these distributions there is a separation between

the outliers and inliers, and that in combination we obtain an even better discriminant between these two

classes.

By using Equation 7.5, we can combine the values of all of the rescaled variables (i.e., θi) to compute

P (out | θ) for each galaxy in the DEEP2 and SDSS, both for the OOB and the test data. We present these

P (out | θ) distributions for the DEEP2 in Figure 7.3 and for the SDSS in Figure 7.4. Both 7-outliers/Figures

are similar, showing a clear separation between the outliers and inliers in both data sets. The probability

ranges between zero and one, and the outliers are generally concentrated near one, while the inliers are

concentrated near zero. While some mis-classifications remain, the contamination has been greatly reduced,

meaning we can successfully identify a majority of the outlier population. Lastly, while there are a few

galaxies with probabilities lying somewhere between zero and one, these distributions are highly bimodal,
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Figure 7.3: The count distribution of P (out | θ) for the DEEP2 OOB data (top) and test data (bottom)
showing both the outliers (orange) and inliers (gray).

which reinforces the belief that this method provides a remarkably good discriminant between these two

populations.

Once again, in both 7-outliers/Figures 7.3 and 7.4, the OOB and test data distributions show strong

similarities. As a result, we can expect that any cut we make on the OOB data will produce similar results in

the test data, allowing us to make a robust classification of outliers in potentially blind test data.

7.2 Comparison with zConf

In Chapter 3 we introduce the parameters zConf (Carrasco Kind & Brunner, 2013a) which quantifies the

shape of the PDF by computing the area under the photo-z PDF around the mean (or any other single

estimate) given some window. We demonstrated that this approach also provides a better way to characterize

outliers and that it can be used to clean the galaxy sample after the photo-z computations. We showed in

Figure 3.16 that there is a correlation between zConf and the accuracy of the results. To compare this outlier

approach with that parametrization, we show in Table 7.1 the effects of selecting outliers by using this NBC

approach and by using the zConf approach for the DEEP2 data. To simplify the comparison, we first select

inlier galaxies by using the P (out | θ) to cut the test data sample, and subsequently choosing those galaxies

in the test data that have the highest zConf so that we have the same number of galaxies selected via both

techniques.

The information in this Table demonstrates that the NBC approach produces a sample of galaxies that
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Figure 7.4: The count distribution of P (out | θ) for the SDSS OOB data (top) and test data (bottom) showing
both the outliers (orange) and inliers (gray ).

Table 7.1: The effect of removing outliers from the DEEP2 test data on several, select performance metrics
by using the Näıve Bayes Classifier and the zConf cut approach. The two techniques are applied to ensure
equal numbers of galaxies are selected, which is indicated by the Fraction column.

Method Criteria Fraction < ∆z′ > σ∆z′ out0.1

NBC < 0.998 83.0 % 0.02819 0.03948 0.0362
zConf > 0.854 83.0 % 0.02868 0.04186 0.0371
NBC < 0.894 72.0 % 0.02616 0.03548 0.0304
zConf > 0.893 72.0 % 0.02721 0.03895 0.0330
NBC < 0.174 56.0 % 0.02565 0.03470 0.0251
zConf > 0.918 56.0 % 0.02595 0.03575 0.0289
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Table 7.2: The effect of removing outliers from the SDSS test data on several, select performance metrics
by using the Näıve Bayes Classifier and the zConf cut approach. The two techniques are applied to ensure
equal numbers of galaxies are selected, which is indicated by the Fraction column.

Method Criteria Fraction < ∆z′ > σ∆z′ out0.1

NBC < 0.999 83.0 % 0.01560 0.01533 0.0022
zConf > 0.7018 83.0 % 0.01589 0.01704 0.0035
NBC < 0.802 72.0 % 0.01473 0.01411 0.0012
zConf > 0.755 72.0 % 0.01475 0.01549 0.0026
NBC < 0.001 56.0 % 0.01387 0.01309 0.0006
zConf > 0.807 56.0 % 0.01366 0.01410 0.0020

have a smaller spread in ∆z′ along with a smaller number of outliers than the zConf method, which was

previously shown to be beneficial in this regard (Chapter 3). We interpret this result as suggesting that a

zConf cut can potentially remove good galaxies whose photo-z PDF happens top be broad, while retaining

some bad galaxies that have a well-localized photo-z PDF. By using a Näıve Bayes approach, we collect all

information from photo-z PDFs predicted by using different, semi-independent methods, allowing a more

robust discriminant between outliers and inliers. Finally, we notice that as always there is a trade-off between

completeness, whereby we try to retain as many good galaxies, and contamination, whereby we try to

minimize the inclusion of bad galaxies. The final choice in this conflict should be determined by the scientific

application, but by producing a probabilistic value, subsequent researchers can make these cuts more easily.

We performed a similar analysis on the SDSS galaxy sample and present the results in Table 7.2. As

was the case with the DEEP2 galaxies, we see that the NBC approach once again does better in identifying

outliers within the sample, as the NBC cuts have a smaller scatter and the fraction of remaining outliers is

remarkably small. We also notice that the mean bias is similar between the two approaches, but the number

of outliers, defined as ∆z′ > 0.1, is significantly reduced when we adopt the Bayesian approach. This is yet

another piece of evidence supporting the benefits of aggregating information to make decisions.

We can also test how the definition of an outlier affects this approach. Previously we identified an outlier

as a galaxy that had ∆z′ > 0.1; but for the purpose of this test, we apply a much more restrictive cut of

∆z′ > 0.05. We apply the NBC cut and produce a matched sample by imposing a zConf cut to both the

DEEP2 and the SDSS galaxies, presenting the information in Table 7.3. We find, once again, that even for

this more restrictive approach we produce a cleaner catalog (of the same size) as compared to using only

the zConf parameter. Interestingly, even after removing almost 30% of the galaxies from the DEEP2 galaxy

sample, we still have over a 10% outlier contamination. On the other hand, this tight cut applied to the SDSS

galaxies produces a very small contamination of ∼ 2%, for both methods, albeit the NBC approach is still

slightly better.
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Table 7.3: The effect of removing outliers, defined as ∆z′ > 0.05, from the DEEP2 and SDSS test data on
several, select performance metrics by using the Näıve Bayes Classifier and the zConf cut approach. For each
data set, the two techniques are applied to ensure equal numbers of galaxies are selected, which is indicated
by the Fraction column.

Method Criteria Fraction < ∆z′ > σ∆z′ out0.05

DEEP2
NBC < 0.996 72.0 % 0.02780 0.03934 0.138
zConf > 0.878 72.0 % 0.02809 0.04244 0.141
SDSS
NBC < 0.85 72.0 % 0.01461 0.01407 0.0247
zConf > 0.75 72.0 % 0.01479 0.01554 0.0278

While producing galaxy samples that are less affected by outliers than competing techniques, the NBC

approach has an additional advantage in that it can easily be extended to other variables and to other photo-z

algorithms. In effect, any information that might increase the efficacy of outlier identification can be included

in order to improve this discriminant while still maximizing the overall galaxy sample size.

7.3 Summary

Within our Bayesian Framework, we developed a novel, Näıve Bayesian Classifier (NBC) that efficiently

identifies outliers within the galaxy sample. The approach we present gathers all available information

from the different photo-z PDF estimation techniques regarding the shape of the PDF, the location of the

mean and mode, and the magnitudes and colors, which are all naively assumed to be independent, in order

to compute a Bayesian posterior probability that a certain galaxy is an outlier. The distribution of these

probabilities for an entire galaxy sample indicate that this is a very powerful method to separate outliers from

inliers (i.e., good galaxies), and we further demonstrated that this approach can produce a more accurate

and cleaner sample of galaxies than competing techniques, such as the use of the zConf parameter. An

important takeaway point is that all information provided by the catalogs and the photo-z PDF methods, no

matter how redundant the information might appear, helps in building this discriminant probability. Given

the probabilistic nature of this computation, the final application of this technique can be chosen to maximize

the scientific utility of the resulting galaxy data for a specific application.
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Chapter 8

Photo-z PDF representation and storage

Outline
In this chapter we introduce the use of a sparse basis representation to fully represent individual photo-

z PDFs. By using an Orthogonal Matching Pursuit algorithm and a combination of Gaussian and Voigt

basis functions, we demonstrate how our approach is superior to a multi-Gaussian fitting, as we require

approximately half of the parameters for the same fitting accuracy with the additional advantage that an

entire PDF can be stored by using a 4-byte integer per basis function. By using data from the CFHTLenS

described in 2.4, we demonstrate that only 10 to 20 points per galaxy are sufficient to reconstruct both the

individual PDFs and the ensemble redshift distribution, N(z), to an accuracy of 99.9% when compared to

the one built using the original PDFs computed with a resolution of δz = 0.01, reducing the required storage

of 200 original values by a factor of 90%.

We compute the photo-z PDF for all one million galaxies in our test sample CF-2, described previously, by

using our spectroscopic training sample CF-1 using TPZ . We used all colors and magnitudes, which results

in a total of nine attributes, and construct 600 trees to make the predictions. TPZ also uses the attribute

errors during the prediction process, in part to deal with missing attributes in the catalog(see Chapter 3 for

a detailed description). We also have computed photometric redshifts for galaxies in the training sample by

using a cross validation technique called Out-Of-Bag (Breiman, 2001; Carrasco Kind & Brunner, 2013a) in

which a photo-z PDF is obtained for all galaxies in the training set by using all the trees that do not contain

that particular galaxy. This approach, therefore, avoids over-fitting; and we have shown that this method is

reliable and also unbiased (Carrasco Kind & Brunner, 2014a).

For illustration, we present a sample of forty photo-z PDFs randomly selected from the CFHTLenS galaxies

in Figure 8.1, presented in increasing order by the computed mean value of their photo-z PDF. The redshift

range for the galaxies are the same and the PDFs have all been normalized to unity. From this figure, it is

clear that these photo-z PDFs are not simple functions, often having multiple peaks; and they are, therefore,

poorly represented by a single Gaussian, which has often been used for simplicity in the past. In Figure

8.2, we present a summary of the results on the training data determined by using the OOB cross-validation

technique. The top panel compares zphot, computed by using the mean value of each photo-z PDF, with zspec
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Figure 8.1: Forty representative, randomly selected photo-z PDFs computed for the CFHTLenS data by using
TPZ, each normalized to unity. In each subplot, the horizontal axis is redshift and the vertical axis is the
probability density. The PDFs are sorted in the vertical axis by the number of peaks.
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Figure 8.2: Top: A comparison of the photometric and spectroscopic redshift for all galaxies in the training
sample computed by using the OOB cross-validation technique. The red line shows the one-to-one line for
guidance. Bottom: The N(z) distribution computed by using the spectroscopic redshifts (gray area) and by
stacking the photo-z PDFs (red) for the training sample galaxies.

for all 49,868 galaxies in the training sample. This indicates the approximate performance of TPZ on the real

dataset within the limits of the training sample. The bottom panel shows the distribution of the galaxies as

a function of redshift in terms of their spectroscopic values (in gray) compared with the N(z) obtained by

stacking the PDFs (red line). We can see a remarkable agreement between these two distributions, as we

have shown previously (Carrasco Kind & Brunner, 2013a).

8.1 PDF Representation

In this section we present the different methods that we use to represent the full photo-z PDF. For the rest of

this discussion, we will make the following assumptions. First, we have N total galaxies in our sample with

individual photo-z PDF estimates. Second, we can represent the photo-z PDF, Pk(z), for the kth galaxy in the

sample by pzk. Finally, we have n sample points in the original galaxy photo-z PDF. Thus Pk(z) is sampled

at a resolution δz, given by δz = ∆z/n, where ∆z is the redshift range spanned by the photometric data.

8.1.1 Statistical Representation

The simplest representation for a full photo-z PDF is to use a summary statistic. We will consider five different,

summary statistics, four of which are single values: the mean, the mode, the median of the PDF, and a Monte-
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Carlo sampling from the original cumulative PDF (Wittman, 2009). This fourth approach involves sampling

a random number from the range 0–1, and determining the cumulative probability to this numerical value.

Finally, the last representation is a single Gaussian fit to the original photo-z PDF, which provides a two

value summary: the mean and variance of the Gaussian. As a result, we require either N , for the first four

approaches, or 2N , for the last approach, statistics to represent the full photo-z PDF catalog.

8.1.2 Multi-Gaussian Fitting

The second representation for a full photo-z PDF we explore is the application of a multi-Gaussian fit to each

photo-z PDF (see, e.g., Bovy et al., 2011, 2012). In this approach, each Gaussian (when more than one is

used) included during the fitting process will require three parameters: the amplitude, the mean, and the

variance. In this approach, we first determine the number of peaks, Npk, in the photo-z PDF. We increase

this value by one and use the result as the number of Gaussians to be used in the fitting process for that

specific photo-z PDF. The extra Gaussian improves the fit to extended wings in the photo-z PDF distribution,

which often arise from the residuals of the Gaussian fits to the individual PDF peaks.

To determine the best fit values, we use a Levenberg-Marquardt minimization algorithm. In this case,

each Pk(z) can be represented by:

pzk =

Npk+1∑
i=1

αk,ie
−

(z−µk,i)
2

2σ2
k,i (8.1)

where αk, µk and σ2
k are vectors of dimension Npk + 1 containing the amplitude, mean, and variance for

each Gaussian included in the fitting process. As a result, the total number of values needed to represent the

full photo-z PDF catalog is
∑
k 3(Npk + 1).

8.1.3 Sparse Basis Representation

The final technique that we will use to represent a photo-z PDF is the sparse basis representation. In this

case, we will adopt a set of basis functions to represent a PDF by using the following model:

pzk = Dδk + εk (8.2)

where D is a dictionary or basis matrix of dimension n×m, where m > n. Thus, we have an over-determined

problem as the number of basis functions, m, is much larger than the dimension, n, of each photo-z PDF. In

this case, each column, dj , of the dictionary matrix, D, is a basis function that must be `2 normalized, i.e.,

||dj ||2 = 1 for j = 1, 2, . . . ,m.
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We want to find, for each galaxy k, the optimal vector solution δk, which is determined such that its

pseudo-norm ||δk||0 is minimized. Alternatively, this can be equivalently stated that we want to minimize the

number of non-zero entries in the vector, δk, given the residual error εk. In this case, we can either use a

predefined number of basis functions or we can define a fixed residual for every galaxy in the sample. Either

way, the total number of points required to represent the entire catalog is given by
∑
k 2(Nbk), where Nbk is

the number of basis functions used for each galaxy. Note that in this case we only need two numbers for each

functional basis: the functional coefficient (a floating point number), and the index number of the function

within the basis set (a integer number). This already corresponds to a potentially large reduction in the total

data volume required to archive photo-z PDFs. We will see in subsequent sections that we can also represent

the basis function coefficients by using integers; and that, in addition, we can combine both terms into a

single thirty-two bit integer, thereby reducing the total number of values required to
∑
k(Nbk).

Finding δk in this over determined problem can be challenging. For this analysis, we have selected to use

Orthogonal Matching Pursuit (OMP), an iterative algorithm that finds, at each step, the column, dj , of the

dictionary matrix, D, that best represents the current residuals. This process is repeated until a predefined

criteria is reached, either a residual threshold or the total number of basis functions used. Fundamentally,

this approach is similar to the well known CLEAN algorithm, which is used to analyze interferometric radio

observations (Högbom, 1974). The advantage of OMP over the standard Matching Pursuit algorithm (Mallat

& Zhang, 1993) is that a specific basis function can only be selected once. Since the residuals are orthogo-

nalized during the selection of the basis functions for the current galaxy, we generate an independent set of

basis functions to represent each galaxy’s photo-z PDF.

Conceptually, the OMP algorithm that we apply to all galaxies can be enumerated1:

1. Initialize all variables. First, define the residual vector to be the original photo-z PDF, ε0
k = pzk. Second,

create an empty set of cumulative selected basis functions, Bk. Finally, set δk = 0, and define i = 0 as

the number of the current iteration.

2. Compute the current set of basis functions. First, find the column vector, db, from the dictionary matrix,

D, where b is the index position that maximizes the projection of εik:

dib = max
dj∈D

|dTj · εik| (8.3)

Second, add this selected basis function to the set Bk, i.e., Bk = (Bk,d
i
b).

3. Orthogonally project the original photo-z PDF onto the linear space spanned by the columns of all
1Note, the superscript T indicates transposition
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previously selected basis functions:

wi
k = BT

k · pzk (8.4)

where wi
k is a temporary vector corresponding to the coefficients of the currently used basis functions

in Bk.

4. Complete the projection by updating the residuals by using the temporary vector wi
k:

εi+1
k = pzk −Bk ·wi

k (8.5)

5. Check the stopping criteria: ||εi+1
k ||2 < εth, where εth is the threshold residual or i > ilim, where ilim

is the number of required basis functions. If the pre-selected stopping criteria is met, the calculations

are completed: δk = wi
k and pzk = D · δk + εi+1

k , where δk is sparse. Finally, the photo-z PDF

representation is defined:

pzk ≈ D · δk (8.6)

On the other hand, if the predefined stopping criteria is not met, the iteration step is increased, i = i+1,

and steps 2–5 are repeated by using the current residual vector. This process is repeated over all galaxies

k, where k = 1, 2, . . . , N .

Dictionary Selection

Given the nature of the shape of the photo-z PDFs (see, e.g., Figure 8.1), it is natural to select a set of

Gaussian-like basis functions that span the redshift range of our photometric galaxy sample. We can use the

the original resolution and redshift range spanned by the generated photo-z PDF to determine the dictionary

to use for the sparse basis representation. One of the primary advantages of this method is that these

dictionary entries are composed of analytic functions that can be combined with other functional forms.

There are no restrictions, other than computational time, on how large of a dictionary we can use, as there

is no requirement for the dictionary to be permanently stored. Furthermore, a photo-z PDF can be restored

even without reconstructing the dictionary, as long as the indices and coefficients are efficiently stored.

We select Nµ Gaussian functions, whose mean values span the redshift range of our galaxy sample, which

has a redshift resolution δz. Thus, we can compute:

Nµ =

⌈
∆z

δz

⌉
(8.7)
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where ∆z = z2 − z1 and z2 and z1 are, respectively, the upper and lower limits of the redshift range spanned

by our galaxy sample. We select, at each Nµ location, Nσ values for the standard deviation that linearly span

the range from a minimum value of σmin to a maximum value σmax. The minimum value is selected in such a

way that we will approximately have a single Gaussian that fills a single redshift bin of width δz. In practice,

a Gaussian vanishes at approximately 3σ from the mean; therefore, we can select σ1 = δz/6.

On the other hand, we select the broadest basis function to approximately cover half of the full redshift

range ∆z at each position; therefore, we select σmax = ∆z/12. Although the extreme basis functions are not

frequently used, they ensure that we cover all possibilities. Finally, we set the resolution between different

values of σ to be δz/2 in order to make sure the difference between two consecutive Gaussian basis functions

is on the order of δz. Setting ∆σ = σmax − σmin we have that Nσ is given by:

Nσ =

⌈
2∆σ

δz

⌉
(8.8)

which can be simplified to

Nσ =

⌈
∆z

6δz
− 1

3

⌉
≈ Nµ

6
(8.9)

As some photo-z PDFs have extended wings, we also generate Nγ basis functions for each Gaussian basis

function with extended profiles by using a Voigt profile. Voigt profiles are widely used in spectral line fitting,

and are defined as the convolution between a Gaussian distribution and a Lorentzian distribution. A Voigt

profile can be written as the real part of the Faddeeva function (Abramowitz & Stegun, 1972):

V (x;σ, γ) =
1

σ
√

2π
Re
[
e−z

2

(1− erf(−iz))
]

(8.10)

where erf(−iz) is the complex error function. z = (x−µ)+iγ

σ
√

2
is a complex variable, where µ is the center of

the function, σ is the standard deviation from the Gaussian, and γ determines the strength of the extended

wings and is a parameter from the Lorentz distribution. As a result, if γ = 0, we have a Gaussian distribution

with parameters µ and σ.

We present examples of different Voigt profiles in Figure 8.3 given a fixed µ = 0.3 and σ = 0.01, but

with γ varying from zero (Gaussian) to one σ. We do not, however, select pure Lorentzian profiles, as they

produce distributions that are too extended to be practical for this analysis. In practice, we find that an upper

limit of γ = 0.5σ is sufficient to accurately model any extended wings. Thus, including the Gaussian case

with γ = 0, we fix Nγ = 6 and allow γ to vary linearly from 0 to 0.5σ in steps of 0.1σ. Thus, in the most

simple case we would only consider basis functions with γ = 0 and Nγ = 1. On the other hand, Figure 8.4
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Figure 8.3: Different normalized ||dj ||2 = 1 Voigt profile basis functions with the same mean, µ = 0.3, and
sigma, σ = 0.01, for different values of γ, which ranges from 0 (blue) to 1σ (red). Note that for γ = 0,
we recover the standard Gaussian distribution. In a full dictionary, we create these profiles over the entire
redshift range of the galaxy sample for different values of σ.

shows an example of a dictionary of basis functions described in the text which are shown with a vertical

shift for illustration. We observe that the basis span all the redshift range. On each filled region we will have

several different spreads for each bases which are not shown here but the solid colored area shows the span

of basis at that given location. In practice the resolution in redshift and sigma is higher.

In total, the dictionary is composed of Ntotal = Nµ × Nσ × Nγ bases, which all have `2 norm equal to

unity. By using our previous definitions, we have the following approximate rule of thumb for creating a

dictionary:

Ntotal ≈ N2
µ =

(
∆z

δz

)2

(8.11)

Although this is an estimate, it provides a very good approximation to the total number of bases needed

given the resolution of the original photo-z PDF. Additional bases are not necessary and little is gained

by using a finer resolution. Photo-z codes generally provide photo-z PDFs by using roughly two to three

hundred points. According to Equation 8.11, we notice that for 250 sample points in a PDF, we would need

approximately 62,500 bases. Thus, we can use a 2-byte integer to express the indices into our basis function

dictionary, which has important ramifications in the compact storage of photo-z PDFs as discussed in the next

section.
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Figure 8.4: A illustration of the bases used in the dictionary, each shaded region is composed by several
functions of different widths, those colored shaded regions are full of bases. In a real dictionary the spacing
between these functions is much tighter ( 200 points in the redshift range)

8.2 Discussion

We have applied the previously discussed photo-z PDF representation techniques to the CFHTLenS data

introduced in Section 2. We have computed a photo-z PDF for each galaxy in the one million test sample by

using the TPZ software to compute a PDF with two hundred sampled points at a resolution of δz = 0.011.

We display one such photo-z PDF in Figure 8.5 where the original distribution is shown in green, a

multi-Gaussian representation is shown in blue, a sparse basis representation is shown in red, and a single

Gaussian model is shown with a blue dashed line. We can see that both the sparse basis representation

and the multi-Gaussian agree remarkably well with the original photo-z PDF, to the point where it is hard

to see the original PDF. As one would expect in this multi-peak PDF, the single Gaussian model does not

reproduce this photo-z PDF very well. The inset panel provides a zoomed-in view showing the sparse basis

representation of the photo-z PDF and the actual basis functions used in the representation. As the number

of bases is increased, we expect some of them to have a negative coefficient, as shown in the inset, which

aids in the reconstruction of the residuals from the previous bases. Given the iterative nature of this process,

we select the new basis function that optimally corrects the residuals of previous bases in order to best

reconstruct the photo-z PDF by using the minimum number of functions.

In order to quantitatively compare the reconstruction of the photo-z PDF by using the three methods

as shown in Figure 8.5, we compute the multi-Gaussian fitting for all 106 galaxies from our CFHTLenS test
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Figure 8.5: The representation of an original photo-z PDF (green) given by three techniques: multi-Gaussian
(blue), single Gaussian (blue dashed line), and sparse basis representation (red). The inset panel shows the
final bases (in black) used to represent the photo-z PDF while the recovered distribution is shown in red.

centering

Figure 8.6: The residual distribution for all CFHTLenS galaxies computed by using the multi-Gaussian
representation (blue) and the sparse basis representation (red). In each case, we use the same number of
representation values for each galaxy photo-z PDF. For comparison, the Single-Gaussian representation is
shown in green. Inset: The distribution of points (bases or fitting parameters) per galaxy photo-z PDF. The
number of peaks, Npk, per photo-z PDF is the same, but divided by 6. Thus, there are 3(Npk + 1) parameters
per galaxy.
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sample. For each galaxy we record the number of values (parameters) required to accurately reconstruct the

original PDF. Note that in this fitting approach, we are not fixing the number of Gaussian functions used in

the reconstruction, but are instead defining the number of Gaussians as the number of peaks in the photo-z

PDF plus one extra Gaussian to compensate for the residuals and extended profiles. In addition, we also

compute, for each galaxy, the optimal sparse representation by using a variable number of basis functions

that are constrained to match the number of points used in the multi-Gaussian fitting. We also compute the

best single Gaussian fit to each PDF to demonstrate the importance in using the information contained within

the full PDF as opposed to simply treating each photo-z estimate as a Gaussian PDF.

After computing the different representations for each galaxy, we next compute the norm of the residuals

between each representation and the original photo-z PDF for each galaxy and accumulate the results. We

compare the resulting distributions in Figure 8.6. First, we notice the broad shape of the single Gaussian

distribution (green). In fact, the width of the distribution exceeds the plot boundaries as the median of the

single Gaussian distribution of residuals is 0.043, which is outside the range of the Figure. Second, we observe

that when using the same number of values to represent the photo-z PDF, the sparse basis representation

produces much smaller residuals with a more concentrated distribution than the multi-Gaussian fitting.

Specifically, the median of the sparse representation residual distribution is 0.0033, which is almost half of

the value (0.0058) for the multi-Gaussian fitting. Both of these results indicate that either method provides a

good representation of the photo-z PDF by using a small number of values. We also show the distribution of

values required to reconstruct the photo-z PDF of each galaxy in the inset panel of Figure 8.6. This subplot

indicates that approximately 35% of the galaxies are single peaked (six values are required for two Gaussians,

which in our implementation means a single peak plus an extra Gaussian for the extended wings). The

distribution extends up to thirty-nine values for roughly 1-2% of the sample, which corresponds to twelve

peaks in a photo-z PDF. The average number of values per galaxy is fourteen, which, in itself, implies a

large compression ratio when compared to the original two hundred values while still providing a very good

reconstruction of the full photo-z PDF.

While a natural number of basis functions can be determined for the multi-Gaussian representation,

the sparse basis representation is more general and thus does not have a simple, natural number of basis

functions. In order to better understand the optimal number of basis functions for photo-z PDFs, we compute

the sparse basis representation for all galaxies in the test sample by using a different number of fixed bases.

We combine the residuals, and plot the median value of the distribution as a function of the number of values

used to represent the PDF as blue dots in Figure 8.7. As shown in the figure, as we increase the number

of bases, the residuals decrease monotonically. This decrease is quite rapid at first, as expected, and slowly
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Figure 8.7: The median of the residual distribution as a function of the number of fixed bases used to
reconstruct each galaxy’s photo-z PDF when using the sparse representation technique (blue dots). For
reference, the median of the multi-Gaussian residual distribution (red triangle) and the median of the sparse
representation with variable number of bases (black star) are also shown, where on average both techniques
need fourteen points per photo-z PDF.

decreases until approximately twenty-five bases are used. For comparison, we also show the multi-Gaussian

residuals for fourteen values (red triangle) and the corresponding sparse basis representation residuals for

approximately the same number of values ( black star), demonstrating the superiority, in terms of precision,

of the sparse representation over the multi-Gaussian. If we restrict the number of values to twenty, we have

a median residual of 0.018, which corresponds to a median reconstruction of all one million test galaxies

at 99.82% at a resolution of δz = 0.011. Since the original photo-z PDF contained two hundred points, this

implies a compression ratio of ten.

Clearly these results will vary depending on the galaxy sample. In particular, the data we use in this

analysis are from the CFHTLenS, which is a representative deep survey with galaxies that have photo-z

PDFs with up to twelve peaks. The performance of the sparse representation also depends directly on the

number of peaks in each PDF when we globally fix the number of bases. In Figure 8.8, we display the median

of the residual distribution as a function of the number of peaks in the photo-z PDF, with different curves

corresponding to different numbers of globally fixed bases. For a fixed number of bases, the residual increases

as the number of peaks increase. Thus, a galaxy sample that consistently has a low number of peaks will

have increased performance when using a smaller number of bases.

For example, we achieve a 99.5% reconstruction by using only ten values for galaxies with four or fewer

peaks. In Carrasco Kind & Brunner (2014b), we discussed the relationship between the number of peaks and
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Figure 8.8: The median of the residual distribution as a function of the number of peaks in the photo-z PDF
when using (solid color lines) a different number of fixed bases in the sparse basis representation, (black
dashed line) when using the multi-Gaussian fitting technique, and (black dashed-dotted line) when using
the sparse representation when the number of bases is equivalent to the number of multi-Gaussians.

the shape of the photo-z PDFs with the outlier fraction. With this in mind, we could reduce the number of

bases used to reconstruct a sample and flag those with a high number of peaks, where the reconstruction

is less reliable, for further investigation. In fact, we achieve a reconstruction of 99% for photo-z PDFs with

three or fewer peaks when using only five bases for the sparse representation. This produces a compression

ratio of forty when the original photo-z PDF has two hundred points.

For comparison, we also show the fitting residuals for the multi-Gaussian (black dashed line) and sparse

representation (black dashed-dotted lines) where the variable number of bases matches the number of multi-

Gaussians. The performance of the multi-Gaussian fitting is less dependent on the number of peaks simply

because the number of parameters dynamically changes for each photo-z PDF. Overall, the multi-Gaussian

performance is fairly consistent at around 0.005, even as we increase the number of peaks. The sparse

representation with a variable number of bases, on the other hand, is less dependent on the number of peaks

and has residuals that are nearly 50% smaller than the multi-Gaussian fitting at an approximately constant

value of 0.003.

PDF Storage

In the previous section, we discussed how the sparse representation and the multi-Gaussian fitting can

accurately represent a photo-z PDF by using only a few dozen values with a reconstruction level of 99%. In
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the case of the multi-Gaussian fitting, the number of parameters to be stored will depend on the number

of peaks in each individual PDF. As discussed previously, we will have 3(Npk + 1) parameters, which are

all floating point numbers. For this dataset we found that the average number of values (or floating point

parameters) required is fourteen; but to store these data for all galaxies, we would need to combine the

results from different galaxies in order to take advantage of the galaxies that require fewer values so that

we can also store those galaxies that require a larger number of parameters. Varying the number of values

to store galaxy photo-z PDFs in this manner might not be practical, as it will likely depend strongly on the

archival and storage system while also increasing the computational difficulty in dealing with a varying

number of parameters for different photo-z PDFs. The practical solution would be to use thirty-nine fixed

values (the maximum required for this dataset) for all galaxies and store them independently. This result is

also true for the varying sparse representation, which we have demonstrated has a better performance in

comparison to the multi-Gaussian when representing a photo-z PDF.

On the other hand, requiring a fixed number of basis functions per galaxy alleviates this issue and

also has the additional benefit that there is no need to pad with zeros since having more points for single

peaked galaxies simply provides a more accurate representation. We have shown that by using ten to twenty

values we are able to produce a residual on the order of 0.1%, where all galaxies are stored independently.

One additional (and very important) advantage of the sparse basis representation is that all bases in the

dictionary have `2 norm equal to unity. Furthermore, when bases are computed by using the OMP algorithm,

the absolute values of all coefficients are, by definition, less than unity. They can be negative, however, as

seen in Figure 8.5. Since the PDFs are probability distributions, by definition the integral of the PDFs over

the redshift range must also be unity. As a result, we can rescale all coefficients; and, as long as their relative

amplitudes are the same, we can always impose the integral normalization at the end of the reconstruction.

If we continue this line of reasoning, we can rescale the coefficients of every basis function for a given

galaxy so that the coefficients have absolute values between zero and one. When doing this we will be

sure that the first basis function has unit amplitude without loss of accuracy on the very first basis. We can

discretize this range by using approximately 32,000 sampling points (specifically 215) between zero and one,

and store the corresponding integer from this range, and its sign, in a single sixteen-bit value. The error

introduce by this discretization is very small, on the order of 10−5, which is almost always negligible for

most applications. In this approach, the most important basis is always first, and since it defines the scale, is

always stored with no rounding errors.

We have, in fact, used this discretization throughout this chapter; the difference introduced by using this

discretization and the real values is less than 0.0005% and thus it does not directly affect the representation
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Figure 8.9: A single four-byte integer scheme to store a single basis function in the sparse representation
method. The first sixteen bits store the coefficients (including sign), while the second sixteen bits store the
location of the bases in the dictionary.

accuracy. This allows us to only use one value per basis function in our sparse representation. Since our

dictionary contains fewer than 65,000 bases, which can be completely represented by a sixteen-bit integer,

we can use a single four-byte integer, as shown graphically in Figure 8.9, to store both the base function and

its amplitude and sign. More specifically, if we have a two hundred point photo-z PDF, which corresponds to

a resolution of δz = 0.011 over the range z = 0 to z = 2.2, and we fix our representation to use ten bases, we

can achieve an average reconstruction accuracy of 99.5% by using only 40Bs per photo-z PDF. Given a million

galaxies that we treat in this manner, we will only need approximately 38MBs to store all of their PDFs. In

addition, since we are only storing four-byte integers to represent the full photo-z PDF, we can potentially

reduce the overall disk storage requirements by employing existing bit compression techniques (Lemire &

Boytsov, 2012) which will be important for relational database systems.

The representation and data encoding scheme we have proposed is, of course, even more flexible than

we have demonstrated. If our photo-z PDFs employ either a different redshift resolution, span a larger

redshift range, or simply have been sampled at a higher number of points, we can still use a four-byte integer

representation. For example, if the original PDF is sampled at a finer resolution, we can double Nµ and

reduce Nγ by one-half and still retain the same number of bases, recall we simply need the number of bases

to be less than 216 (or 65,536) in order to still have 215 bits to encode the basis function index. In an extreme

case, we can revert to a purely Gaussian set of basis functions and allow Nµ and Nσ to vary while keeping

the total number of bases below the 216 limit. In this case, we likely would need to increase the number of

fixed bases in order to accurately represent the photo-z PDF.

If the number of required bases exceeds the 216 limit, because, for instance, our photo-z PDFs are sampled

at an extremely high resolution or span a large redshift range, we can always increase the size of the

dictionary beyond this two-byte limit. In this case, we simply have a very dense dictionary, where fewer fixed

bases would be necessary; thus, each basis function would be stored in either a six-byte or an eight-byte

integer, depending on the details of the computational system. Another alternative would be to fix the

number of bits used to encode each type of basis function; for example, to use two-bits for Nγ , six-bits for

Nσ and eight-bits for Nµ, resulting in four, sixty-four, and two hundred and fifty-six possible values for each
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basis function. As a fixed framework, this technique could also simplify the storage and functional indexing.

Finally, as we have mentioned earlier, there is no need to store the entire dictionary since it is simply defined

over a functional basis. Instead, we only need to store the parameters required to regenerate the dictionary

so that we can either regenerate the dictionary or generate the individual functions themselves as needed.

8.3 Summary

In this Chapter, we have presented different techniques to represent and efficiently store photo-z PDFs, which

have been shown to convey significantly more information than a single photo-z estimate. As we enter the

era of precision cosmology, the growth of large, dense photometric surveys has created an unmet need to

quantify and manage these probabilistic values for hundreds of millions to billions of galaxies. Specifically,

we have introduced the use of a sparse basis representation that uses a dictionary of Gaussian functions

and Voigt profiles, which have extended wings, to accurately and efficiently represent each photo-z PDF. We

minimize the number of required bases while maintaining a high accuracy by using an Orthogonal Matching

Pursuit algorithm, which provides a unique set of bases for each photo-z PDF while minimizing the residual

between the original and final photo-z PDF.

We use the CF-1 and CF-2 data to compute photo-z PDFs by using our TPZ code, producing PDFs with

two hundred points and a redshift resolution of δz = 0.011. By using these PDFs, we demonstrate the

our proposed sparse basis representation reconstructs a more accurate PDF than other techniques, include

a multi-Gaussian fitting approach with a flexible number of parameters based on the number of peaks in

each PDF. If we use the exact same number of parameters with our sparse representation as used by the

multi-Gaussian fitting, we found that the sparse basis representation results are superior with the additional

benefit that each basis or parameter can be stored using a single integer. We also showed that, with a fixed

number of bases, we could achieve both a highly accurate PDF that also has a large compression ratio. As

a specific example, we found that by using only ten (twenty) values per photo-z PDF, we could reconstruct

a photo-z PDF at over a 99.5% accuracy with a compression ratio of twenty (ten), providing a significant

storage reduction without a loss of information.

We quantified the number of bases required within the sparse representation dictionary, specifically

finding that (∆z/δz)2 bases are sufficient to represent the galaxy photo-z PDFs in our CFHTLenS test sample,

where ∆z is the overall redshift range and δz is the photometric redshift PDF resolution. If the number of

points in the original PDF is approximately 200–250, we can use a dictionary with fewer than 216 bases, which

results in an accurate PDF reconstruction while only requiring a single sixteen-bit integer to store the basis
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index in the dictionary. Furthermore, since the bases themselves are normalized, all basis coefficients are less

than unity by definition; and, since the photo-z PDFs are also normalized, we only need to retain the relative

amplitudes of each basis function.

Therefore, we can independently rescale the coefficients for each galaxy to their maximum value and

subsequently represent them by using a discretized range containing 215 values. This will provide a resolution

less than 10−5, and since we set the maximum value from the most significant basis function, it is always

correctly represented. As a result, we can also store the coefficients (sign included) in a separate sixteen-

bit integer without losing information. Taken together, we can completely encode a single basis function,

both dictionary index and coefficient, in a single four-byte integer, simplifying the data management and

significantly reducing the data storage and reconstruction computational requirements.

Of course the results we have presented will depend on the quality of the photo-z PDFs to which they

are applied, which themselves depend on the details of the photo-z algorithm that generated them. As

would naively be expected, single peaked photo-z PDFs are most accurately reconstructed by using either a

multi-Gaussian fitting or a sparse basis representation, where only five points per photo-z PDF is sufficient

to achieve a 99% accurate reconstruction. Overall, these results are very promising, as current and future

photometric surveys will produce up to tens of billions of photo-z PDFs. Our proposed approach will either

allow a reduction in the overall storage requirements or increase the number of photo-z PDFs that can be

persistently maintained for each galaxy without increasing the required amount of storage. In the next

Chapter we will see one direct application to this sparse representation as well as other general applications

of the work presented so far.
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Chapter 9

Applications

Outline
In this chapter we will discuss some of the applications of what it has been exposed on previous chapters

that were not previously covered. We show how the use of photo-z PDFs provides a better reconstruction of

the galaxy distribution as a function of the redshift in comparison to single photo-z estimators and how our

sparse representation can help in its computation by introducing a new framework. We present a summary

of the results of applying TPZ on early data taken from the Dark Energy Survey and the main results we

obtained during a photometric redshift analysis on this data by comparing with other photo-z codes. We

also show how the photo-z PDFs are also incorporated to carry out clustering studies using the Angular

power Spectrum that is easily applicable to other clustering measurements like the Angular correlation

function by using simulated data that mimics current photometric surveys.

9.1 N(z) and the galaxy distribution

In the previous chapters we have stated the importance of photo-z PDF in the analysis of clustering of galaxies

and other cosmological measurements. We provided a detailed analysis on how we compute photo-z PDFs

using our own methods and how we can improve these computations and also introduced a novel way to

represent them and to store them. All these points are essential in order to reduce all possible systematics

and to improve the metrics and accuracy of the PDFs which will enhance the cosmological measurement and

will help to reduce the error in the parameter estimation.

Although we have already discussed the computation of N(z) as one direct outcome from the photo-z

computation, here we will discuss its computation and used in more detailed based on previous discussion.

Most of the results we have presented within this thesis have been based on the estimation of a single metric

computed from the photo-z PDF, for example the mean or mode. Obviously, using a single value to represent

the PDF wastes significant information, but since many photo-z applications mimic spectroscopic redshift

applications, new approaches must be developed to capitalize on the full information content of a photo-z

PDF. Furthermore, several recent works have shown (e.g., Mandelbaum et al., 2008; Cunha et al., 2009;
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Wittman, 2009; Bordoloi et al., 2010; Abrahamse et al., 2011), the use of a single number to represent the

photo-z leads to biases. As a result, we present a simple, yet very important application that uses the full

photo-z PDFs—estimating the galaxy redshift distribution, N(z). This function is a fundamental measurement

and is very important to a number of cosmological applications including weak lensing tomography (e.g.,

Mandelbaum et al., 2008; Jee et al., 2013; Chisari et al., 2014) and projecting three-dimensional theoretical

power spectra to angular clustering measurements (Blake et al., 2007; Myers et al., 2009; Hayes et al., 2012;

Wang et al., 2013).

To illustrate this point, We compute the normalized galaxy redshift distribution, N(z), for all the galaxies

in DP-1 sample without zConf cuts using the full photo-z PDF. This is the same data introduced in Chapter

2.3 and used in Chapter 3 and 4, shown in Figure 9.1 as the shaded gray area. As demonstrated by this

figure, in this spectroscopic survey, most galaxies were selected to have redshifts between 0.6 and 1.2. Next,

we compute the binned photometric redshift distribution by using the mean value from each photo-z PDF,

shown by the red curve. While this curve does trace the gross features of the underlying spectroscopic redshift

distribution, it fails to capture the full detail and can be significantly different at certain redshifts, including at

the mode. For comparison, we show in black the photo-z PDF redshift distribution that we obtain by simply

stacking the individual PDFs together. With this simple approach, we obtain a more accurate representation

of the true sample redshift distribution. Here we have used all the galaxies, without selecting galaxies by their

confidence level. This demonstrates that all individual PDFs computed with TPZ carry important information

about the underlying distribution.

These differences are more clearly exposed in the bottom panel of Figure 9.1, where we show the absolute

fractional error, (Nphot−Nspec)/Nspec, as a function of redshift, using the same color scheme as before. From

this figure, we see that the stacked PDF has a smaller error for almost all redshifts. In addition, the photo-z

PDF redshift distribution is considerably smoother and looks more like a fit to the spectroscopic sample,

which is another benefit of using the full photo-z PDF. For this particular demonstration, the photo-z PDF

presented used a bin size of 0.002, while the spectroscopic and photometric redshift distributions used a

bin size of 0.03. Of course, we can generate smoother distributions for either the spectroscopic or photo-z

mean value redshift distributions by reducing the bin size, however, the trade off is that we run the risk of

increasing the shot noise in the resulting distribution.

We came to similar conclusions on the other Chapters as well, Figures 4.7, 6.9, 6.13 and 8.2 also show

examples where the N(z) distributions of the spectroscopic sample (for different data sets) is compared to

the one obtained by stacking the photo-z PDF together with remarkably agreement validating this discussion.
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Figure 9.1: (Top): The redshift distribution for the all DEEP2 spectroscopic sample of galaxies (shaded gray
histogram), computed from the mean value of individual photo-z PDFs (red curve), and computed by stacking
individual photo-z PDFs (black curve). (Bottom): The residual absolute error between the spectroscopic
redshift distribution and the two photo-z redshift distributions shown using the same color scheme.

9.1.1 N(z) using sparse representation

We now focus on how to compute N(z) and how to incorporate the tools presented in Chapter 8 to reduce the

computational cost. Usually, this function is computed by binning spectroscopic observations of galaxies as a

function of redshift; but for a photometric survey, this distribution is optimally computed by integrating over

all individual photo-z PDFs at a given resolution. This approach is indeed more computational challenging

than using individual photo-z when a large number of galaxies is available, but as discussed before is

more accurate. Therefore, even with this simple application, however, we benefit from the use of a sparse

representation for our photo-z PDFs, since we can transform our theoretical framework to use our basis

functions. Thus we can operate directly over the dictionary and use the sparse basis indices and coefficient

parameters to calculate the true and reconstructed values taking into account the normalization.

As a demonstration we use the same data used in Chapter 8 and detailed in §2.4. We can derive the

framework to compute the galaxy redshift distribution directly over the basis functions. For this, we start by

writing the definition of N(z) and we use the same notation introduced in the previous chapter:

N(z) =

N∑
k=1

∫ z+∆z/2

z−∆z/2

Pk(z)dz (9.1)

where the sum is over all N galaxies and Pk(z) is the photo-z PDF of a given galaxy k. z is the midpoint
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Figure 9.2: The N(z) distribution for all 106 galaxies from the CFHTLenS data (CF-2) computed by using the
four photo-z PDF representation techniques. Within each panel, the original N(z) computed by stacking the
full photo-z PDFs is shown in gray and a different representation method is shown in blue. From left to right
we have the single Gaussian model, the Monte Carlo sampling described in Section 8.1.1, the multi-Gaussian
fitting method, and the sparse representation method that uses the same number of bases as the multi-
Gaussian method. The bottom panels show the absolute difference between the original and reproduction at
the same scale.

of each redshift bin, which have a fixed width ∆z. We can rewrite this equation in terms of the PDF

representation for Pk(z), which we previously defined as pzk. Thus, in the sparse basis representation, we

can express each PDF as:

pzk ≈ D · δk (9.2)

where δk is a sparse vector, which might contain ten to twenty elements, that contains the amplitudes for

each functional basis and D is an n×m dictionary, where n is the number of points in the original PDF and

m is the total number of bases. By using this result, we can rewrite Equation 9.1:

N(z) =

N∑
k=1

δk ·
∫ z+∆z/2

z−∆z/2

Ddz (9.3)

where δk is independent of redshift so that we only need to integrate once over each basis function in the

dictionary; thus, we only have m integrations instead of N .

Furthermore, we can precompute this integral over D, which we denote by ID(z). This integral corre-

sponds to a vector of length m, where each entry is the integral over each one of the basis functions dj in
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D:

ID(z) =

∫ z+∆z/2

z−∆z/2

djdz j = 1, 2, . . . ,m (9.4)

Since all N galaxies are expressed in terms of the m bases, we can also pre-factorize the coefficients (or

amplitudes) in a vector δN :

δN =

N∑
k=1

δk (9.5)

Therefore, after these precomputations we can simply express N(z) as:

N(z) = ID(z) · δN (9.6)

reducing the computation to a simple dot product of precomputed quantities. For each bin, we need to

compute ID(z), but δN is computed only once and can be used both for all bins in the computation of

N(z) and in other cosmological applications. This result is also true for other linear operations that might

be involved in another cosmological analysis. Thus, by working directly in the space defined by the basis

functions, we can reduce computational memory and processing times significantly.

We compare the original N(z) for 106 test galaxies from the CFHTLenS sample to different N(z) distribu-

tions reconstructed by using Equation 9.6 for different representation formats in Figure 9.2. Each original

galaxy photo-z PDF has a resolution of δz = 0.011 and contains two hundred values. We restrict the com-

parison in Figure 9.2 to four techniques: a single Gaussian model, the Monte Carlo estimator described in

Section 8.1.1, a multi-Gaussian fitting technique, and the sparse basis representation. However, we compute

the fractional percentile error between the original N(z) and all eight techniques and compare the results

in Table 9.1. Before discussing the performance of individual techniques, we note that the lower panels in

Figure 9.2 are all shown at the same scale to facilitate direct comparisons.

In the first panel, we see that the single Gaussian model clearly shows a significant difference, which

is visible both from the distribution itself and in the bottom panel from the absolute error between these

two distributions. Next, we see that the single point photo-z estimation computed by using a Monte Carlo

sampling shows a surprisingly good agreement with the original distribution. This result was discussed by

Wittman (2009), who demonstrated that this technique does provide a fair statistical representation of the

sample’s galaxy redshift distribution. This approach, where the N(z) distribution is computed as a random

sample drawn from the cumulative PDF of each galaxy, statistically compensates for the photo-z errors for

an individual galaxy and thus produces a reliable N(z) distribution. This approach does, however, introduce

much larger errors on the estimation of individual galaxy photo-zs. While one might be tempted to store a
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Figure 9.3: The fractional percentile error between the original N(z) and the reconstructed N(z) computed
by using Equation 9.6 when fixing the number of bases used to represent the photo-z PDFs for all galaxies
with the sparse representation technique (blue dots). For comparison, we also show the multi-Gaussian (red
triangle) and the sparse representation with a variable number of bases (black star) residuals. On average,
both of these latter techniques require fourteen points per photo-z PDF.

photo-z PDF by using this approach in order to accurately recover an N(z) by storing a minimum quantity of

new data, it would be easier to simply compute and store the actual N(z). Furthermore, since this technique

is dependent on using a large number of galaxies to generate a more accurate N(z), if one is interested

in computing the redshift distribution for galaxy subsets, the reconstruction accuracy might suffer as the

number of galaxies in the subsamples is decreased.

In the third panel, we see that the multi-Gaussian fitting technique has a smaller error than the first two

methods. As discussed previously, this method provides an accurate representation of a photo-z PDF, thus

it would be expected to also yield an accurate representation for N(z). Finally, in the last panel we have

the results for the sparse basis representation where the number of bases used is defined to be the same as

required for the multi-Gaussian fitting method. As seen previously with the distribution of residuals, we see

that, with this direct cosmological application, we recover the original N(z), by using the same number of

values to represent the photo-z PDF, more accurately than with other techniques.

We present the fractional percentile error between the originalN(z) and the reconstructedN(z) computed

by using Equation 9.6 for different photo-z PDF representation techniques in Figure 9.3. As also seen in

Figure 8.7, we see that as the number of bases increases for the sparse representation (shown in blue dots)

the accuracy of the reconstruction also improves, but here we focus on the error in the reconstruction of

N(z). Since additional bases will produce a more accurate photo-z PDF representation, we also expect a
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more accurate N(z) reconstruction when the number of bases increases. For comparison, we also show the

multi-Gaussian fitting (red triangle) and the sparse representation (black star) where the number of bases

matches the multi-Gaussian fitting value.

We observe that, by using only fifteen values, we can reconstruct the N(z) distribution to an accuracy

of 99.9% as measured with respect to the original distribution. In addition, this result changes only slightly

when we limit our representation to ten bases. We also see that the error values are slightly better than

we saw when reconstructing the individual photo-z PDFs, because computing the N(z) smooths over the

individual photo-z PDFs, thereby reducing the impact from small discrepancies in individual photo-z PDFs

that might result from using a specific functional basis. If we increase our representation to use forty bases,

we can reconstruct the N(z) distribution to nearly 99.95%, but the decrease in the error, however, does not

change significantly once we have used approximately twenty-five bases, suggesting there are diminishing

returns.

In Section 8.1.1, we introduced several different individual photo-z estimates that are widely used,

including the mean, the mode, and the median of the photo-z PDF, and Monte Carlo sampling from the

cumulative photo-z PDF. These single estimates show an even larger fractional error than visible on the

vertical axis shown in Figure 9.3, and are thus presented in Table 9.1, which summarize the results from all

of the methods presented herein, including the number of values required by the representation method and

the fractional percentile error for that method in reconstructing the original N(z).

The entries in Table 9.1 are presented in ascending order by the size of this fractional percentile error.

From these entries, we see that the single Gaussian model has, on average, a reconstruction error of 2.2%

while the single value estimates all have reconstruction errors over 6%. The Monte Carlo sampling method

provides the best reconstruction results when using a single photo-z estimate with an error of about 0.4%,

which is comparable to a sparse representation that uses five bases. As mentioned previously, however, this

technique does not provide accurate individual photo-z estimates. We also observe that the difference when

using thirty, thirty-five, or even forty bases is very small, although it is bigger than the resolution in the

discretization scheme; thus our proposed discretization method does not impact these results and we can

safely represent each basis function by using a single four-byte integer.

The integration over the dictionary of bases, as shown in Equation 9.4, can also be used to compute N(z)

over different redshift bins. In this case, the integration can be performed by using the bases and subsequently

applying Equation 9.6 when using the sparse basis representation. Furthermore, we can extend this approach

to analyze multiple photo-z PDFs for each galaxy, where they are each represented by the same dictionary.

This would prove useful when a survey has stored photo-z PDFs for the same galaxy by using different galaxy
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Table 9.1: The fractional percentile error between the original N(z) and a reconstructed N(z) computed by
using the sparse basis representation, single and multi-Gaussian fitting, and all of the single point photo-z
techniques described in Section 8.1.1. We also list the number of values required to represent the photo-z
PDF. The table is sorted in ascending order by the percentile error.

Method Values per PDF Error [%]
sparse rep. fixed 40 0.05545
sparse rep. fixed 35 0.05551
sparse rep. fixed 30 0.05611
sparse rep. fixed 25 0.05750
sparse rep. fixed 20 0.06829
sparse rep. fixed 15 0.08729
sparse rep. same MG 14 0.12930
sparse rep. fixed 10 0.13440
multi-Gaussian 14 0.19779
sparse rep. fixed 5 0.31113
Monte Carlo 1 0.37294
single Gaussian 2 2.19095
Median PDF 1 6.63550
Mean PDF 1 7.47077
Mode PDF 1 13.24271

spectral templates. Thus, a scientist could either compute an N(z) by using a single, per-galaxy best template

or compare different N(z) that are computed by using different template combinations. Since the integrals

could all be precomputed, the only new computation is for the basis coefficients for each galaxy, dramatically

reducing the overall computational demands.

For example, we might have different (or even updated) priors for different galaxy types in a survey.

We can quickly apply these new priors to the precomputed dictionary integrals and recover the results for

each galaxy given their basis coefficients in an efficient manner. Alternatively, one might want to minimize

over the galaxy type under certain restrictions, which can be applied over the precomputed integrals of the

dictionary of bases. The minimization problem subsequently becomes a simple task of selecting the minimum

or maximum sum over the coefficients. As should be evident from these examples, there exist a number of

different applications where our proposed sparse basis representation not only reduces the overall storage

requirements, often significantly, but also reduces the computational requirements for cosmological analyses.

9.2 Dark Energy Survey Science Verification data

In Sánchez et al. (2014) we present results of a study of the photometric redshift performance on early data

coming from the Dark Energy Survey which is briefly described in Chapter 2.5 and fully detailed in Sánchez

et al. (2014). We study the performance of 13 photo-z codes and a detailed study on 4 particular codes

including TPZ . Within the spectroscopic sample (DS-1) matched to the DES data, we make 2 subsamples;
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Figure 9.4: g and i magnitude distributions for the full, calibration and weighted calibration sample. The
difference between the full and the calibration samples is apparent, the latter being significantly brighter.
After applying the weighting procedure described in Lima et al. (2008), the weighted calibration distributions
agree very well with the corresponding DES-SV distributions.

Main and Deep, the former refers to a sample that has the same depth in magnitude as the main depth

of the DES survey. The Deep sampler refers to a deeper depth observations taken from data selected from

supernova fields which are observed multiple times. In this section we present a summary of the main results

from that study, where some of the text and figures are extracted from Sánchez et al. (2014).

9.2.1 The weighting procedure

In order to assess the photo-z performance of the DS-1 data we would ideally need a calibration sample being

representative of the DES-SV full sample (DS-2 data), i.e. having exactly the same photometric properties

(magnitude and colour distributions). However, spectroscopic galaxy samples are shallower, and suffer from

selection effects. A weighting procedure, which assigns a weight to each of the galaxies in the calibration

sample so that the distributions of their photometric observables reproduce the distributions of the same

observables in the full sample, can be used provided there is enough overlap between the photometric spaces

of the calibration and full samples (Lima et al., 2008; Cunha et al., 2009).

Different algorithms can be used to compute the weights, but basically all compare local densities in
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Table 9.2: Definition of the metrics used in the text to present the main results. These are computed in the
whole redshift range as well as in bins of width 0.1 in photometric redshift. Detailed definitions can be found
in the appendix.

Metric Description Requirement
∆z mean of the ∆z distribution -
σ∆z standard deviation of the ∆z distribution -
∆z50 median of the ∆z distribution -
σ68 half width of the interval around ∆z50 containing 68% of the galaxies < 0.12
out2σ fraction of galaxies with: |∆z −∆z| > 2σ∆z < 0.1
out3σ fraction of galaxies with: |∆z −∆z| > 3σ∆z < 0.015
∆z′ mean of the ∆z′ = ∆z/εphot distribution -
σ∆z′ standard deviation of the ∆z′ distribution -
Npoisson difference between N(z)phot and N(z)spec normalized by Poisson fluctuations -
KS Kolmogorov - Smirnov statistic for N(z)phot, N(z)spec -

the photometric spaces of the two samples (calibration and full) and assign a weight to each photometric

region of the calibration sample equal to the ratio between the densities of galaxies in the full sample and

the calibration sample in a given region. In this study we use a nearest neighbour algorithm to compute the

weights that we use extensively throughout the section. A detailed description of the method can be found

in Lima et al. (2008).

We apply the weighting technique within a region in the multidimensional space defined by 18 < iAB <

24; 0 < g− r < 2; 0 < r− i < 2. In Fig. 9.4 one can check how the weighting procedure is efficiently applied

for the sample used in this study. The figure shows, for two DES bands, and the Main and Deep samples,

the magnitude distributions for the full sample, the calibration sample and the weighted calibration sample,

whose distributions agree very well with those of the full sample.

9.2.2 Metrics used to compare and assess the different methods

To carry out a the photometric study and compare different approaches we use an extensive set of metrics

that are shown in Table 9.2 together with the DES science requirements for photo-z , defined before the start

of the survey.

The photo-z metrics we consider are intended to measure the quality of the photometric redshifts in terms

of their bias, scatter, and outlier fraction statistics, and also in terms of the fidelity of the photo-z errors and

of the agreement between the photo-z and true redshift distributions. For each photo-z code and each galaxy

we have either the photo-z estimation and its associated error or a probability density function P (z). As

described in the text, a vector of weights were computed in order to match the spectroscopic and photometric

samples in multi-color and magnitude space. On each sample we have a vector ω of weights corresponding

to the N galaxies on each test set, where
∑N
i=1 ωi = 1. If no weights are used, the default value ωi = 1

N is
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assigned to each galaxy. We define the individual bias as ∆zi = zphot,i − zspec,i and the statistics used in this

work as follows:

1. mean bias(∆z):

∆z =

∑
ωi∆zi∑
ωi

(9.7)

2. σ∆z :

σ∆z =

(∑
ωi
(
∆zi −∆z

)2∑
ωi

) 1
2

(9.8)

3. median (∆z50), the median of the ∆z distribution, fulfilling:

P50 = P (∆z ≤ ∆z50) =

∫ ∆z50

0

ω(∆z)d(∆z) =
1

2
(9.9)

4. σ68, half of the width of the distribution, measured with respect to the median, where 68% of the data

are enclosed. This is computed as:

σ68 =
1

2
(P84 − P16) (9.10)

5. out2σ, the fraction of outliers above the 2σ∆z level:

out2σ =

∑
Wi∑
ωi

(9.11)

where,

Wi =


ωi, if |∆zi −∆z| > 2σ∆z

0, if |∆zi −∆z| ≤ 2σ∆z

6. out3σ, the fraction of outliers above the 3σ∆z level:

out3σ =

∑
Wi∑
ωi

(9.12)

where,

Wi =


ωi, if |∆zi −∆z| > 3σ∆z

0, if |∆zi −∆z| ≤ 3σ∆z

7. ∆z′, the mean of the distribution of ∆z is normalized by their estimated errors. Ideally this distribution

should resemble a normal distribution with zero mean and unit variance. We define ∆z′i = ∆zi/εphot,i
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where εphot,i is the computed error of the photometric redshift for galaxy i. Then:

∆z′ =

∑
ωi∆z

′
i∑

ωi
(9.13)

8. σ∆z′ :

σ∆z′ =

(∑
ωi
(
∆z′i −∆z′

)2∑
ωi

) 1
2

(9.14)

9. Npoisson, a metric that quantifies how close the distribution of photometric redshifts N(zphot) is to the

distribution of spectroscopic redshifts N(zspec). For each photometric redshift bin j of width 0.1, we

compute the difference of N(zphot)−N(zspec) normalized by the Poisson fluctuations on N(zspec):

npoisson,j =

( ∑
zphot,i ε binj

ωiN −
∑

zspec,i ε binj

ωiN

)
√ ∑
zspec,i ε binj

ωiN

Then Npoisson is computed as the RMS of the previous quantity:

Npoisson =

 1

nbins

nbins∑
j=1

n2
poisson,j

 1
2

(9.15)

10. KS is the Kolmogorov-Smirnov test that quantifies whether the two redshift distributions (N(zphot)

and N(zspec)) are compatible with being drawn from the same parent distribution, independently of

binning. It is defined as the maximum distance between both empirical cumulative distributions. The

lower this value, the closer are both distributions. The empirical cumulative distribution function is

calculated as:

Fspec(z) =

N∑
i=1

Ωzspec,i<z∑
ωi

where,

Ωzspec,i<z =


ωi, if zspec,i < z

0, otherwise

Similarly, the empirical cumulative distribution function Fphot(z) is computed for N(zphot). Then the

KS statistic is computed as:
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KS = max
z

(|Fphot(z)− Fspec(z)|) (9.16)

For the submissions with a P (z) for each galaxy, these cumulative distributions are computed taking into

account the p(z) distribution for each galaxy

9.2.3 Photo-z methods

Before presenting a summary of the results we list in Table 9.3 the algorithms used during this analysis. For

more relevant information, regarding the details at the time of running these codes see Sánchez et al. (2014)

and for an exhaustive description of them see the references listed in Table 9.3. For template-based methods,

a standardized set of filter throughput curves has been used. Most of the codes have been run in standalone

mode, while a fair fraction of them has been run within the DES Science Portal, with compatible results. Due

to the large number of codes used, the study, other than showing the DES-SV photo-z capabilities, also serves

as a helpful reference to compare different photo-z codes using real data from a deep galaxy survey.

Table 9.3: List of methods used to estimate photo-z’s in this section. Code type and main references are
given.

Code Reference
Training-based
DESDM, Artificial Neural Network Oyaizu et al. (2008b)
ANNz, Artificial Neural Network Collister & Lahav (2004)
TPZ , Prediction Trees and Random Forest Carrasco Kind & Brunner (2013a, 2014c)
RVMz, Relevance Vector Machine Tipping (2001)
NIP-kNNz, Normalized Inner Product Nearest Neighbor de Vicente et al., in preparation
ANNz2, Machine Learning Methods Sadeh et al., in preparation
ArborZ, Boosted Decision Trees Gerdes et al. (2010)
SkyNet, Classification Artificial Neural Network Bonnett (2013); Graff et al. (2014)
Template-based
BPZ , Bayesian Photometric Redshifts Beńıtez (2000); Coe et al. (2006)
EAZY, Easy and Accurate Redshifts from Yale Brammer et al. (2008)
LePhare Arnouts et al. (2002); Ilbert et al. (2006)
ZEBRA, Zurich Extragalactic Bayesian Redshift Analyzer Feldmann et al. (2006)
Photo-Z Bender et al. (2001)

9.2.4 Results

During this study we carried out several tests including some ones like train on a deep depth sample, test on

a main depth sample, add u band when available, among others. We will summarize the results of the Test 1

which is the most important of the test configurations and defer the reader for a complete overview of the
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results to Sánchez et al. (2014). We also check the differences in the results under variations in the calibration

data and the weights used. Note that the results presented in this subsection are those considering all the

galaxies (with quality cuts), which are represented by one single statistic, later in the section we analyze

some of these results in more detail.

Test 1: Main-Main

This test is the most representative of the results shown in this study, the default case. We use here the Main

training sample to train and calibrate the photo-z algorithms and the Main testing sample to validate them,

therefore, the test represents the real situation for most of the data collected in the DES survey.

In order to display the performance of all codes, in Figure 9.5 we show the zphot vs. zspec scatter plot

for all the codes listed in Table 9.3. Furthermore, we compute all the metrics presented in Table 4.1 and

described in Section 9.2.2. The results, using all the objects in the testing sample except for the 10% quality

cut (based on photo-z errors and allowed by the DES requirements), are shown in Table 9.2.4.

The left panel of Figure 9.6 shows σ68, related to the precision of the photometric redshifts versus the

mean bias of the photo-z’s. The black dashed line sets the DES science requirement on σ68, and one can check

how most of the codes presented in this work are below this line, thus fullfilling this important requirement

on precision. Also, among the codes satisfying the σ68 requirement, there is a subgroup having very low bias

as well. In the left panel of Figure 9.6 we show a zoomed-in of this region of interest, where we can see

how training-based codes, either producing a single photo-z estimate or a probability density function, P (z),

are the ones showing best performance (all the codes in the zoomed-in region belong to the training-based

category), among these we note that our TPZ and SkyNet provide the lowest metrics among them all.

One crucial aspect of photo-z studies, which we have discussed along this thesis, is the estimation and

calibration of the true galaxy redshift distributions N(z). In this section we use two metrics to compare

the reconstruction of the true redshift distribution by the different photo-z algorithms: the Npoisson and KS

statistics, defined before. In both cases, the smaller the value, the closer are the true redshift distribution

and its reconstruction through photo-z’s. The right panel of Figure 9.6 shows these values for all the codes

analyzed in Test 1. As expected, the two metrics are strongly correlated. It can also be seen how having

a redshift PDF for each galaxy, instead of a single-estimate photo-z, helps a given code to have a better

redshift reconstruction. This can be inferred looking at the cases where both the PDF and the single-estimate

are displayed (TPZ , ANNz2, BPZ): in all these cases the PDF version of the code obtains better results in

terms of these two metrics. As for the results, TPZ and the nearest-neighbor code, NIP-kNNz, show the best

performance in this regard.
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Figure 9.5: zphot vs. zspec scatter plot for all the codes analyzed in Test 1 and listed in Table 9.3.
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Figure 9.6: (Left):σ68 vs. bias for all the codes analyzed in Test 1. Black dashed lines represent the DES science
requirements in this and subsequent figures. Training-based codes have triangles as markers, template-based
have circles, and codes producing a probability density function (PDF) for the redshift are marked with a
square. Training-based codes, either producing a single photo-z estimate or a PDF, are the only ones present
in the region of best performance (zoom-in). (Right): Npoisson vs. KS statistics for all the codes analyzed in
Test 1. Both metrics show how the true galaxy redshift distribution is reconstructed through photo-z’s, for
each code. The smaller the value of the metric, the better the reconstruction. A strong correlation between
the two metrics is observed, as expected.

As pointed out in Carrasco Kind & Brunner (2014c) these results might vary for different regions on the

multidimensional photometric space or within the redshift range. Usually, training-based algorithms perform

better on areas well populated with training galaxies and poorly on those less dense regions (as in high

redshift bins), fact that we can observe from Figure 9.5 where training-based methods tend to have tighter

distributions at the center while some template-based methods can compute photo-zs for galaxies at higher

redshift more efficiently.

9.2.5 Results for DESDM, TPZ, SkyNet and BPZ photo-z codes

So far we have compared a large number of photo-z codes in a variety of situations and configurations. Next

we look in greater detail at four photo-z codes: DESDM, TPZ , SkyNet and BPZ . The DESDM photo-z code,

a regression artificial neural network, is integrated within the DES Data Management service, so its results

will be made available together with all the DES data products, making it a clear choice to be studied in
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detail here. TPZ and SkyNet are state-of-the-art training-based methods using, respectively, random forests

and artificial neural networks to compute photo-zs , and yielding the best performance among all the codes

utilized in this analysis. Finally, BPZ is the template-based photo-z code showing best performance in the

tests previously shown, and it has been widely used by other galaxy surveys such as CFHTLenS (Heymans

et al., 2012; Hildebrandt et al., 2012). All these four codes are public.

A very important issue, which is actually the most important result needed from photo-z studies in order

to perform many cosmological analyses, is the estimation of true redshift distributions N(z). In Figure 9.7

we observe how the full redshift distribution reconstructed from the four photo-z codes compares to the

spectroscopic distribution. The DESDM code produces one single value for the photo-z of each galaxy in the

testing sample while the other three are P (z) codes, so that they return a probability density function (PDF)

for each galaxy to be at a given redshift. This is the reason why the N(z) reconstruction looks smoother for

TPZ , SkyNet and BPZ , since these are computed from stacking all individual photo-z PDFs. Quantitatively,

one can measure how good an N(z) reconstruction is by looking at the Npoisson and KS metrics in Table 9.2.4

the lower these values are, the better is the agreement between the true N(z) and the photo-z-reconstructed

one. As for the advantage of using P (z) codes, one can observe in Table 9.2.4 how the Npoisson values for

TPZ and BPZ are significantly smaller in their P (z) versions than in their single-estimate photo-z versions.

On the other hand, although this full redshift distribution is interesting for photo-z analyses, most of the

cosmological studies split the galaxy sample into multiple photo-z bins, therefore there is a need to know

the true redshift distribution inside each of those photo-z bins. Figure 9.8 shows the redshift distributions,

both spectroscopic and photometric, for six photo-z bins of width 0.2 from z = 0.1 to z = 1.3, and for the

four photo-z codes selected. The limited number of spectroscopic galaxies available makes the distributions

shown in the figure somewhat noisy, especially in the last photo-z bin, where a very small number of galaxies

is available. The third and fourth bins in photo-z are the ones presenting the narrowest spectroscopic redshift

distributions, which agrees with the fact that the photo-z precision is the highest in this redshift range.

In Fig. 9.8, we observe how single-estimate photo-z codes produce a top-hat photo-z distribution for

each (photo-z selected) redshift bin. In this case, depicted in the left column of Figure 9.8, the photometric

and spectroscopic redshift distributions of each bin are very different and therefore a spectroscopic sample is

needed to calibrate the broadening of the redshift bin due to photo-z errors. On the other hand, when using

P (z) codes to bin a sample in photometric redshift, one selects a galaxy to be inside a given redshift bin by

looking at the position of the median of the PDF (other choices are also possible, e.g. the mode), checking

whether it is within the boundaries of the the bin and summing the full PDF of the galaxies inside, including

probabilities beyond the bin limits. That makes the photo-z distribution broader than the bin limits and
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Figure 9.7: Full weighted spectroscopic redshift distribution and its photo-z reconstruction using the four
selected codes for Test 1. TPZ , SkyNet and BPZ produce redshift PDFs for each galaxy, thus yielding smoother
photo-z distributions.
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Figure 9.8: Weighted spectroscopic redshift distributions and their photo-z reconstruction using the four
selected codes, for photo-z bins of width 0.2. The number of spectroscopic galaxies inside each photo-z
bin is shown. The DESDM is a single-estimate photo-z code, while TPZ , SkyNet and BPZ are P (z) codes.
This is the reason why the photo-z distributions returned by the latter codes can reconstruct the tails of the
spectroscopic distributions beyond the photo-z bins. The photo-z bins are defined using the best estimate
zphot for each code, while, for TPZ , SkyNet and BPZ the reconstructed redshift distributions are obtained by
stacking the probability density functions for each galaxy.

156



closer to the spectroscopic redshift distribution of the bin, as can be seen in the three rightmost columns in

Figure 9.8. We can see on those panels how the tails of the spectroscopic distributions are well represented

by the photo-z distributions. This is an important point in favor of P (z) codes since their ability to reproduce

the spectroscopic redshift distribution of a photo-z selected bin by stacking their redshift PDFs makes them

less dependent on a spectroscopic calibration sample.

In summary, we have characterized for each code the true redshift distribution inside each photo-z bin.

Regarding the performance in such task, the four codes studied in this section show similar spectroscopic

redshift distributions for each photo-z bin, but P (z) codes are able to yield a better reconstruction of these

distributions by adding up the redshift PDFs for each galaxy which makes them somewhat less reliant in the

precise photo-z calibration.

9.2.6 Discussion

The photo-z codes showing the best performance in the analysis are all training-based methods. Among

them, there are various codes using Artificial Neural Networks (ANNs) in different ways and configurations

(see Section 9.2.3), and the similarities and differences between them go beyond the network architecture.

Aside from ANNs, TPZ, which is a state-of-the-art photo-z code using Prediction Trees and Random Forests,

performs remarkably well in all the tests in this work. The prediction trees and random forest techniques

used by TPZ have the advantage that they have fewer hyper parameters to be chosen compared to neural

networks. Neural networks have, amongst others, to choose the amount of hidden layers, the amount of

nodes per hidden layer, the learning rate and at least one regularization parameter if present. Random forests

used in TPZ have only 2 hyper parameters to choose: the amount of trees used and the size of the subsample

set of features used at each split. This leaves out the choice of activation function in neural networks and the

choice of the measure of information gain at each split in random forests, maximizing its performance.

Furthermore, training-based photo-z codes show lower bias compared to that of template-based codes,

which indicates possible systematic inaccuracies in the template sets. This can be solved by using adaptive

recalibration procedures, which adjust the zero-point offsets in each band using the training sample. Such

technique has been successfully applied by LePhare in this work, as was also the case in Hildebrandt et al.

(2010).
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9.3 Angular Power Spectrum

The analysis of the statistical distribution of fluctuations in the Universe is a potent method for constraining

theories or components within Cosmology. The 3D power spectrum of galaxies fully describes these variations,

which can be modeled by theory, if these fluctuations are given by a Gaussian random field. Even if they are

not, non-gaussianity in the early Universe can be constrained from large-scales of the power spectrum (Dalal

et al., 2008). In this thesis, we instead use the angular power spectrum (APS) which is a two dimensional

projection of its 3D counterpart. A reconstruction of the full power spectrum is also possible given a well

determined galaxy distribution (Dodelson et al., 2002; Nicola et al., 2014).

Given the wealth of information encoded in the APS, this has been used to constrain cosmological

parameters (e.g., Tegmark et al., 2002; Blake et al., 2007; Thomas et al., 2011; Ho et al., 2012; Hayes et al.,

2012; Leistedt et al., 2013). If the BAO signal is resolved, or by using other features, such as the shape of the

APS in different redshift shells, is possible to obtain the angular diameter distance and therefore constrain

dark energy models (Cooray et al., 2001; Seo et al., 2012). To compute the APS, we use a similar procedure

described in Hayes et al. (2012) and Hayes & Brunner (2013) where C` is calculated using a quadratic

estimation method (e.g., Bond et al., 1998) with Karhunen-Loéve (KL) compression (e.g., Vogeley & Szalay,

1996). This technique fits a quadratic function to the shape of the likelihood function for some initial angular

power spectrum, finds the C` that maximize this quadratic and uses these C` for a new quadratic fit to

iteratively converge to the true maximum of the likelihood function.

9.3.1 Galaxy Overdensities

We compute the overdensities of galaxies by pixelating the area of the survey to be studied by using

HEALPIX (Górski et al., 2005). Since we are incorporating photo-z PDFs, we compute the galaxy over-

density field as follows: We consider only galaxy PDFs (P (z)) that contribute to that pixel in that redshift

bin ( this could be the whole range) having part of its integrated area inside that bin above some threshold

Az. This is work in progress and a more carefully analysis remains to be done. For now we select Az to be

0.2, i.e., only galaxies with areas inside the given bin larger than 20% are considered. Within each pixel the

overdensity is computed :

δi =

Ωsurvey

Nin∑
j

∫ z2

z1

Pij(z)dz

Ωi

Ntot∑
j

∫ z2

z1

Pj(z)dz

− 1 (9.17)
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where i is the pixel number, Pij(z) is the PDF for galaxy j inside pixel i that contributes to the density, Nin

is the number of galaxies inside the pixel with area inside the redshift bin larger than Az, z1 and z2 are the

boundaries of the redshift bin, Ωi is the area of pixel i and Ωsurvey of all pixels analyzed ans Ntot is the total

number of galaxies. As it happens with N(z), this would produce a better overdensity map in comparison to

use the mode or the mean of the PDF. We are currently studying how to quantify this fact and the implications

of this approach to obtain overdensities and also to incorporate our sparse representation into this framework

to speed the calculations. The overdensity field will also depend on the width of the redshift bin, in large

bins this difference is less obvious as most galaxies will be considered. In narrower bins, however, on average

we will have the PDFs better resembles the spectroscopic distribution, being less affected by outliers, but

more affected by projection effects when considering these fractional values. We will continue studying these

effects by using simulations in order to understand the systematics and possible biases introduced by each

method.

9.3.2 Theoretical model and cosmological parameters

After the overdensities fields are computed on a pixelated and previously masked maps, we obtain the APS

using a quadratic estimation. This is a very computationally expensive task as the time scales as n3
pix and the

required memory scales as n2
pix (Hayes et al., 2012), where npix is the number of pixels. We must, therefore,

be careful when using large areas or when increasing the resolution of the pixelization. Since we have the

overdensities for a subarea of the whole sky, we can’t compute the APS C` at all multipoles; instead we are

limited to compute them in multipole bands where the bandwidth is approximately limited to ∆` ∼ 180
φ ,

where φ is the smallest dimension of the survey geometry. The pixel resolution will also limits the extend of

the multipoles as all the information inside a pixel is lost. These two limits on the computation of C` are the

constrains imposed when fitting cosmological model to the observed data.

In order to model the APS, we need to compute the 3D power spectrum P (k) and project it down to

two dimensions using the galaxy distribution N(z) which also plays an important role in the modeling. To

compute a linear P (k) we use the prescriptions of Eisenstein & Hu (1998), and for nonlinear P (k) we use

CAMB (Lewis et al., 2000) and HALOFIT (Smith et al., 2003) at the desired redshift and scale. Here we

use the Limber approximation (Limber, 1953; Crocce et al., 2011), which has been shown to be a good

approximation to large scales where ` > 30 (Blake et al., 2007). Without taking into account redshift space

distortions at the moment, this 2D projection of the power spectrum can be written as:

C` =
`(`+ 1)

2π
b2
∫
dz n2(z)

H(z)

r2(z)
P

(
`+ 1/2

r(z)
, z

)
(9.18)
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where we assume a scale independent bias b for a given redshift bin, r(z) is the comoving distance, H(z)

is the Hubble parameter, P
(
`+1/2
r(z) , z

)
is the 3D power spectrum at a given redshift z. In the linear case we

can simply use P (k, z) = D2(z)P (k, 0) where D(z) is the growth function of density fluctuations. In equation

9.18, n(z) is the galaxy distribution or N(z) normalized within the redshift range. This is the most important

function, as it acts as a window function for the projection and accounts for the mass inside the redshift

bin. It is very important to determine this accurately and as we discussed above and show in Figure 9.1,

using photo-z PDFs is essential in this process. We are currently explore alternatives to implement our sparse

representation in this framework where N(z) can be quickly computed and using a parametrization for its

error we can add uncertainty to the mass distribution which can be later be marginalized over for better fits.

In order to fit the observed angular power spectrum and estimate different cosmological parameters,

we use a Markov Chain Morte Carlo approach which is much faster than the standard χ2 minimization to

explore the parameter space. To sample from the parameter distribution to obtain the set that maximizes the

likelihood (or minimizes the χ2) we use the following χ2 (Tegmark et al., 2002):

χ2(ap) =
∑
bb′

(ln Cb − ln CTb )CbFbb′Cb′(ln Cb′ − ln CTb′) (9.19)

where ap are set of the cosmological parameters of interest, Fbb′ is the Fisher matrix, and Cb is the angular

power spectrum within a bandpower. Using this definition, we then compute the likelihood function and

by using a Metropolis-Hasting sampler we estimate the parameter distributions by marginalizing over the

nuisance parameters which account for uncertainties and systematics in the model fitting. The main goal for

this machinery is to be applied on data from deep and large photometric surveys like the Dark Energy Survey

or from the LSST in the future as these surveys will cover a large area of the sky at deeper magnitudes than

current surveys like SDSS. This will allow to have enough statistics to compute the APS on several redshift

bins which allows to put constrains not only for Dark Matter but also for Dark Energy.

9.3.3 Example application on simulated data

The DES simulation working group have carried out a series of simulations by performing dark matter

particles simulations and adding galaxies to the halos and using the appropriate masking to match the DES

footprint. To try out our methods on calculating the APS and to estimate cosmological parameters, we used

one of the simulated catalogs where they provide observables as well as the true redshifts of galaxies. We then

run our TPZ code described in Chapter 3 on the simulated data to obtain photo-z PDF for all the galaxies in a

selected patch of the sky. The area of the catalog we used consists in 833 squares degrees with ∼ 43 million
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Figure 9.9: TPZ photo-z vs spectroscopic redshifts using PDFs, no quality flags cuts applied for the ∼ 43
million simulated galaxies.

galaxies between redshift 0 and 1.5. We use the observable quantities only (except for the true redshift for

comparison), i.e., the RA,DEC and magnitudes corrected by lensing effects and photometric errors models.

We randomly select 100,000 galaxies for training TPZ , which correspond to 0.2 % of all galaxies, and use

the remaining 43 million galaxies for testing.

We compute photo-z PDFs for the full sample with a resolution of 0.04, and the main results are shown

in Figure 9.9 which shows the 43 million PDFs combined to produce a photo-z vs spec-z to see how TPZ

provides a very good solution to these data. The metrics also are within the DES original requirements

discussed briefly in §9.2 and in more detailed in Sánchez et al. (2014). The feature or degeneracy at low z

is a small issue with the data that is also showing for other codes, which is related to the filter curves used

during the generation of the synthetic magnitudes. Figure 9.10 shows the computed N(z) for these galaxies

which, as discussed, is better recovered when using the full PDF as oppose of the other single estimates, here

the difference is much stronger than previously discussed due to the large number of objects in the catalog.

This plays an important role for the APS analysis as discussed in before, and the differences in the shape will

also strongly affect the overdensity maps as well as the projection of the 3D power spectrum to the angular

version.

We also calculated N(z) for different redshift shells which will be used in the calculation of the APS. These

distributions are shown in the right panel of Figure 9.11 and were calculated with photo-z PDF that had

more than 20% of their area inside the shell. As we can observed, the shapes of the distributions are similar

to a Gaussian distribution and usually a standard approach is to use the photo-z estimation and assume a
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Figure 9.10: Normalize N(z) reconstruction for all the galaxies ion our sample using the mean (green solid
line), the mean (blue solid line) and the stacked PDF (red line). The tru N(z) for the same galaxies is shown
in gray. We observe that the stacking of the PDFs agrees very well with the underlying distribution.
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Figure 9.11: (Left): Overdensity maps using equation 9.17 for the 833 sq. degrees used in the analysis for
4096 pixels. (Right): N(z) for 4 redshift bins using the BCC simulation data and photo-z PDF produced by
TPZ . As discussed in the text only galaxies PDF with more than 20% are considered on the calculation.

Gaussian distribution for a given estimated sigma. Using a full PDF overcomes this problem and is a more

accurate way to describe the photo-z and its error as well as the distribution. To compute the overdensity

fields we pixelated the area being analyzed by using HEALPIX. In total we have 4096 pixels, each pixel has

the same area, which is approximately 0.2 square degrees for the resolution used. The reason we don’t use a

larger area or a higher resolution is due to the computational cost that would result in computing the APS.

The overdensity map for one of the redshift shells (0.8 – 0.9) is shown in the left panel of Figure 9.11 for

reference.

Preliminary results for the APS are presented in Figure 9.12. Due to the area geometry we used a

bandwidth of ∆` = 11. The left panel shows the APS calculated for almost the whole redshift distribution by

using the spectroscopic redshift (blue circles), the mean of the PDF (red triangles), and the full photo-z PDF

(green squares). These three methods do not show much difference since the redshift bin is wide enough

to account for all projection effects, in which basically all the galaxies considered are projected to the same

plane and they all have their PDF within the redshift bin. In this same panel we show the best fitting model

where the data in gray was not included due to the pixel window function. This window function removes

power from the APS which becomes significantly at around half of the computed multipoles. We can model

the loss of power and this can be corrected to fit higher multipoles. On the other hand, the maximum

multipole used here is ` ∼ 300, after that there are other effects that make the APS less reliable at higher `
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Figure 9.12: (Left): Computed APS for the redshift range [0.05-1.4] (almost all galaxies) using the spectro-
scopic redshift (blue), the mean of the PDF (red) and the full PDF (green). The lines shows the fitting to
the data using the same colors where the shaded area was not included in the fit due to the pixel window
function limitation and the ”red” leak problem. (Right): The APS using full photo-z PDFs for three redshift
shell as indicated, no fit has been performed on this data so far.

(red leak effect; Tegmark et al., 2002).

We see a big difference between the fitted models (especially between the mean of the PDF and the other

two) which can be explained in terms of the differences seen in the N(z) from Figure 9.10, where N(z)

computed using the mean of the PDF shows a large disagreement between the ones computed using stacked

PDFs and true redshifts. This re-validates our discussion about including photo-z PDF on cosmological

analysis. Small differences in the model due to these effects can lead to a wrong estimation of cosmological

parameters, therefore the fitting process must be done very carefully considering all possible sources of

uncertainties in which the our use of PDF can greatly contribute.

The right panel of Figure 9.12 shows the APS computed by using full PDF on three different redshift

shells, namely, 0.3 – 0.4 (blue), 0.5 – 0.6 (green) and 0.8 – 0.9 (blue), the N(z) for these bins are shown

in the right panel of Figure 9.11. No fitting to these parameters has been performed so far, however this

is an illustration and the APS in different bins can be used to compute the angular diameter distance and

constrains dark energy models.

Figure 9.13 shows preliminary results using an MCMC approach to fit cosmological parameters to the APS

shown in Figure 16 (top), as mentioned above we use CAMB and HALOFIT to generate P (k) for different

models which are projected to the C` using the galaxy distribution N(z). These plots show the cosmological

parameters histogram and the 2D contour plots when marginalizing over the rest. For illustration and testing

purposes only we choose to fit Ωm, Ωb , bias, ns (spectral index) and the Hubble parameter. The cosmology

used in this simulation is unknown, but it is known that it corresponds to a ΛCDM with parameters close
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Figure 9.13: Preliminary results from cosmological parameters estimation using MCMC mehods on the APS.

to those computed by WMAP7 (Komatsu et al., 2011; Larson et al., 2011). We still need to select the best

combination for the fitting (like Ωmh
2 ), determine the most useful nuisance parameters, the burn-in phase,

and apply some convergence tests to the process. We also want to study the difference between the linear

and nonlinear models for P (k), and the possibility to observe the BAO signal (included in the simulations)

by for example increasing the survey area to reduce the bandwidth.

9.4 Summary

By calculating the normalized distribution of galaxies as a function of redshift, we were able to demonstrate

the advantages of using a full photo-z PDF as opposed to using one single estimator of the PDF or any other

point metric. Specifically, by simply stacking each individual PDF, we recover the underlying galaxy redshift

distribution to a much higher precision than by simplifying using the mean of each individual photo-z PDF.

This is true for all the samples we have used in this thesis, from real observations as with the data introduced

in Chapter 2 to simulated data shown here.

In this chapter, we also demonstrated that, as a simple cosmological application of our photo-z PDF

reconstruction using sparse representation, we could accurately recover the underlying N(z) distribution to

great accuracy. In particular, we recovered theN(z) of our CFHTLenS test sample to an accuracy of 99.87% by

using only ten points per photo-z PDF. Given their compact nature and the fact that they are predetermined,
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we showed that we could obtain the sample N(z) by integrating the bases over the sample redshift range and

later multiplying by the basis coefficients, which can also be prefactored, thereby significantly reducing the

number of required integrations. This same principle can be applied to other linear combinations of photo-z

PDFs or to more complex analyses if they can be expressed in terms of the underlying bases.

Also in this chapter, we present the photometric redshift performance of the DES survey in the SV period.

Most of the relevant photo-z codes have been used in the analysis. Since spectroscopic galaxy samples are

generally shallower, a weighting technique is used to make the calibration sample of galaxies to mimic the

DES full sample in magnitude and color space in order to properly estimate the photo-z performance in the

DES galaxy sample. Calibration and testing samples have been produced with two different depths: Main

is the default depth in the DES survey, and Deep corresponds to the depth in SNe fields. Test 1, which uses

the Main training and testing samples, represents the default case for photo-z estimation in DES. Results

from 13 different codes are analyzed in this case, showing fluctuations in photo-z performance but a general

agreement in codes of the same type (machine-learning or template fitting algorithms). In particular, most of

the codes analyzed comfortably meet the DES science requirements in terms of photo-z precision and several

also meet the requirements on the fractions of outliers.

Generally speaking, training-based photo-z codes show the best performance in the tests in terms of

photo-z precision and bias. Among them, TPZ , using Prediction Trees and Random Forest seem to yield

the most accurate results, achieving a core photometric redshift resolution below σ68 = 0.08 and is today

one of the best, if not the best one, among the training based codes available in the literature. The photo-z

analyses carried out as part of this chapter using these early stage DES data will serve as a benchmark for

future DES data releases, and as the survey area grows during the observation period, more spectroscopic

data will be available allowing a better calibration and a better sampling for training algorithms. Therefore

these promising early results will do nothing but improve in the near future, which will allow putting tighter

constrains on several cosmological parameters.

Regarding to the latter point and as an ongoing application, we have develop a complete framework to

compute the angular power spectrum from generating overdensity maps to fit cosmological parameters by

computing the Angular Power Spectrum that uses the full photo-z PDF which allows, at the end, a better

estimation of the cosmological fitting. We showed, by using simulated data, that this is ready to be apply on

real observation coming from future surveys.
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Chapter 10

Conclusions and Future work

A primary output of this thesis has been the development of a fully parallelized software to compute and rep-

resent the photo-z PDFs, which is publicly available at http://lcdm.astro.illinois.edu/static/code/

mlz/MLZ-1.1/doc/html/index.html. We plan to continue making improvements and to develop this soft-

ware to provide the most accurate photo-z PDFs possible, with additional tools to simplify their use in

cosmological applications.

As part of this framework, we have developed two new, state-of-the-art machine learning photo-z es-

timation codes; the first is TPZ , which is a supervised technique that uses prediction trees and a random

forest. Hundreds of different trees are built recursively by asking a series of questions about the properties

of the data guided by the spectroscopic redshift information, the prediction results from these trees is then

combined to provide not only photo-z PDFs but also ancillary information that can be used to calibrate

spectroscopic observations, to rank variables regarding their importance, and to provide targeting areas to

improve the photo-z solution. TPZ has been extensively applied on several datasets including SDSS, DEEP2,

PHAT, CFHTLens and DES among other with excellent results. It is currently one of the most accurate photo-z

codes available. The development of TPZ was published in Carrasco Kind & Brunner (2013a).

The second method is an unsupervised machine learning algorithm that uses Self-Organizing maps whose

goal is to project the multidimensional color/magnitude space into a two dimensional space where the

topology is closely conserved. Following the TPZ framework, we introduced the concept of a random atlas

where multiple SOMs are generated and their results are aggregated to produce a photo-z PDF. We explored

different 2D topologies and configurations, ultimately reaching similar performance to TPZ but in a quasi-

independent manner. The advantage of this unsupervised technique is that we use the redshift information

only at the final step. This reduces possible bias in the data, and also allows a different characterization of

the redshift distribution or any other variable unused under the same deprojection, as we have subsequently

shown when we combine multiple techniques by comparing their performances via a SOM map. The

development of this method and its applications was published in Carrasco Kind & Brunner (2014a).

During the development of this thesis, we realized that despite there are several template fitting and
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machine learning methods available to compute photo-z PDFs, most previous studies ignore the fact that

the estimation from independent codes can provide extra information about the performance of individual

methods. For example, not only can you use machine learning to improve template methods, but you can use

the independent nature of both approaches to our advantage. To address the lack of analysis in this aspect,

we explored and introduced new Bayesian methods to efficiently combine PDFs from multiple techniques.

We used our own methods that are different in their formulation, and we modified and adopted an SED

fitting approach for the benefit of this work. We demonstrated that by using a sophisticated framework it

was possible to extract even more information than is available to a single method, which translated to a

better photo-z PDF estimation.

We employ techniques of cross validation, in which each algorithm is evaluated carefully on the available

training data, to identify the strengths and weaknesses of each individual method. By using a SOM, we were

able to best identify those areas in the multidimensional color space in which each method work best, thus

providing important insights not only into the methods but also within the data itself. We concluded that

not only do we need to fully understand a photo-z code and its performance, but also the structure of the

data. Both aspects provide powerful information when combining multiple techniques and they must be

considered together.

We explored these techniques under different situations, and we found that it is often possible to get im-

provements by efficiently using the available information. Within the same framework, we used information

from these multiple techniques and a Bayesian Classification scheme called a Naive Bayesian Classifier to

build a better method to identify catastrophic outliers withing the galaxy sample than standard approaches.

This reinforces the idea that multiple methods contain different properties about the multidimensional space

that in combination provides a powerful method to exhaust information contained within the dataset. Our

early work on combination models was published in a conference proceeding in Carrasco Kind & Brunner

(2013b). The detailed study of different Bayesian combination models and the identification of outliers was

published in Carrasco Kind & Brunner (2014c).

While working on the combination model, we faced the problem of dealing with multiple photo-z PDFs

from multiple algorithms and realized that this will quickly become a problem when the number of galaxies

and the number of methods increase significantly. This will clearly happens with future photometric surveys,

and to handle these PDF and to store them in a database will be even more challenging. We therefore focused

our efforts on new techniques to represent and reconstruct these photo-z PDFs by minimizing the number

of points required. We demonstrated that by using a sparse representation, we can write each PDF as a

finite sum of these pre-defined bases (using Gaussian and Voigt profiles) where the number of bases used
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determines the reconstruction accuracy. We showed that this approach outperforms current techniques like

using multi-gaussian fitting, and allows us, for a typical dataset, to represent a full PDF with high resolution

by using a very compressed format of less than 20 4-bytes integers per galaxy. This compressed format retains

an unprecedented 99.9% of accuracy while at the same time facilitating its storage and reconstruction. We

also developed a new mathematical framework where we can write different cosmological measurements,

like the galaxy distribution, in this basis system that also allows us to reduce the computational cost over

the standard approach. The work on this new approach to represent and to reconstruct PDFs in a very

compressed format was published in Carrasco Kind & Brunner (2014b).

We demonstrated by using simple examples the applicability of our methods in different contexts. We

showed that by using the full PDF we obtain a better reconstruction of the distribution of galaxies,,N(z),

and also that this can be computed by using our sparse basis framework. We applied our TPZ code on

early Dark Energy Survey data with outstanding results, we carried out a photo-z code comparison to asses

the quality of the data from DES, and we found that most of today’s codes meet the established scientific

requirements when compared to similar surveys. As a results of this photometric redshift study and photo-z

code comparison, we found that TPZ is among the best codes available. Our analysis and findings on this

DES data was submitted to a refereed journal and published in the public arXiv repository in Sánchez et al.

(2014). We finalized our example applications by showing how to compute the angular power spectrum

of the galaxy distribution for photometric surveys, and how to incorporate the use of photo-z PDFs in this

analysis to constrain cosmological models. Our preliminary results using simulated data show promising

results and indicate that our full machinery will be ready when more data from DES or data from LSST

become available.

One of the goals of this thesis was to provide new tools to compute, combine, and use accurate and robust

photo-z PDFs for cosmological applications, which will enable better and tighter constrains on models of

galaxy formation and evolution. We believe our work on probabilistic photometric redshifts has contributed

enormously to this field, and will enable important scientific discoveries in the understanding of our Universe

as we enter the era of Petascale astronomy.

Future work

Despite that our work has covered several old and new areas regarding probabilistic photometric redshifts,

we still have new ideas that promote ongoing work. In the future we plan to continue investigating new

alternatives to improve upon our photo-z approach. In this regard, we have already started to study the appli-
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cability of machine learning algorithms to predict photo-z at the image pixel level instead of by using pre-built

catalogs. This means that we are working directly on calibrated images, which, after being astrometrically

aligned, are used to identify objects and the photo-z analysis (i.e., , training and validating) is performed

on every pixel. This is computational challenging, but we believe that by using this new approach we can

improve photo-z estimation, especially for faint and blended objects and will avoid systematics introduced

by using different apertures and other related issues in the photometric measurements made by the surveys

from the images. Our preliminary results show that this new approach has great potential and could open

an entirely new line of investigation.

Both of the developed machine learning methods in this thesis also have the capability to be used for

classification problems, like when we need to separate or classify objects into pre-defined classes. We have

successfully applied both of these algorithms to the star-galaxy classification problem which arises from the

fact that faint galaxies are very hard to separate from faint stars as their morphological profiles are very close.

This will become a big issue with the development of deep photometric surveys, and new methodologies to

separate both populations will be very important when constraining cosmological models, as any possible

contamination of stars within the galaxy catalog will bias and degrade measurements. While we did not

discuss this application within this thesis, this is an ongoing investigation where we use our developed codes

as a starting point to tackle these important issues.

We are also continuing to work on the cosmological applications of photo-z PDFs. We are currently

optimizing our APS code to be applicable to large numbers of pixels, and we are also planning to incorporate

our sparse representation framework into this computation. By using a fast method to compute N(z) with the

fact that we can use multiple photo-z PDF techniques to do so, we can incorporate this into the cosmological

parameter estimation in a way that has never been done, where we can parametrize and later marginalize

over the errors associated in the computation ofN(z), which usually is considered static and a known variable

even if its computation might not be very accurate. In this regard we also plan to explore cross correlations

techniques as introduced by Newman (2008) in combination with our approach to improve the computations

of N(z) when representative data is not available.

Finally, and related to our last point, we will continue our work on spectroscopic calibrations by studying

different techniques to maximize the available telescope time when observing new spectroscopic galaxies

which will form a training set. As mentioned in this thesis, all of our methods rely on the availability of

representative and high quality spectroscopic training data. We have worked extensively on new techniques

to retrieve all possible information from the available training data. In the future, we will focus our research

into methods to obtain the best possible training data.
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Beńıtez N., 2000, ApJ, 536, 571 (Cited on pages 3, 74, 75, 79, 80, 85, and 149.)

Bernstein G., Jain B., 2004, ApJ, 600, 17 (Cited on page 2.)

Blake C., Collister A., Bridle S., Lahav O., 2007, MNRAS, 374, 1527 (Cited on pages 138, 158, and 159.)

Blake C. et al., 2011, MNRAS, 418, 1707 (Cited on page 2.)
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